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§2.1  Introduction

Channel
Input X Output Y

 In a communication system, with the observation of Y, we aim to recover X.

 Mutual Information 𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

 Channel capacity describes the channel’s best capability in reducing the 

uncertainty.

= 𝐻 𝑌 − 𝐻(𝑌|𝑋)

It defines the amount of uncertainty about X that has been reduced thanks 

to the knowledge of Y, and vise versa. This uncertainty discrepancy is 

introduced by the channel. 



§2.1  Introduction

Channel

P(y | x)

Input X Output Y

 Let the realization of input X and output Y be x and y, respectively.

 Channel transition probability P(y | x): knowing x was transmitted, the 

probability of observing y. It defines the quality of channel.

 Channel Capacity

𝐶 = max
𝑃(𝑥)
{𝐼(𝑋, 𝑌)}

The maximum mutual information 𝐼(𝑋, 𝑌) that can be realized over all 

distribution of the input P(x).



§2.1  Introduction

 Channel Capacity: 𝐶 = max
𝑃(𝑥)
{𝐼(𝑋, 𝑌)}

 In a wireless communication system, it is the maximum number of information 

bits that can be carried by a modulated symbol such that the information can be 

recovered with an arbitrarily low probability of error.

 To realize this reliable communications, channel coding is needed. Given k

information symbols (or bits), redundancy is added to obtain n (n > k) codeword 

symbols (or bits). The code rate is 𝑟 =
𝑘

𝑛
. Using binary modulation, e.g., BPSK, 

reliable communications is possible if r < C.



§2.1  Introduction

 Why input distribution P(x) matters?

 Consider the data transmission as human flows from Shenzhen to Hong Kong



§2.2  Binary Symmetric Channel (BSC)

 Input:    0  1  0  0  0  1  1  0  1  0 ...

 Input and output are discrete

 𝑃 𝑦 = 1 𝑥 = 0 = 𝑃 𝑦 = 0 𝑥 = 1 = 𝑝

 It is the simplest model of channel that introduces errors. Many wireless channels 

can be abstracted to BSC.
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Output: 0 1 1 1 0 0 1 0 0 0 ...

𝑃 𝑦 = 0 𝑥 = 0 = 𝑃 𝑦 = 1 𝑥 = 1 = 1 − 𝑝



§2.2  Binary Symmetric Channel (BSC)

 Analytic intuition 

 When 𝑃 𝑥 = 0 = 𝑃 𝑥 = 1 =
1

2
, 𝐻 𝑌 = 1 and  
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p
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0 0
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𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

𝐶 = 1 − 𝐻(𝑌|𝑋) bits/symbol.

𝐼 𝑋, 𝑌 will be maximized if 𝐻 𝑌 is maximized and 𝐻 𝑌|𝑋 is minimized.

(1) 𝐻 𝑌 ≤ 1.

(2) 𝐻 𝑌|𝑋 = − 𝑥∈𝑋 𝑦∈𝑌𝑃 𝑥, 𝑦 log2𝑃(𝑦|𝑥)

= − 𝑥∈𝑋 𝑦∈𝑌𝑃 𝑦|𝑥 𝑃(𝑥)log2𝑃(𝑦|𝑥)

= −𝑃(𝑥 = 0) 𝑦∈{0,1}𝑃 𝑦 𝑥 = 0 log2𝑃(𝑦|𝑥 = 0)

−𝑃(𝑥 = 1) 𝑦∈{0,1}𝑃 𝑦 𝑥 = 1 log2𝑃(𝑦|𝑥 = 1)

= −𝑃(𝑥 = 0)( 1 − 𝑝 log2 1 − 𝑝 + 𝑝log2𝑝) −𝑃(𝑥 = 1)(𝑝log2𝑝 + 1 − 𝑝 log2 1 − 𝑝 )

= −(1 − 𝑝)log2 1 − 𝑝 − 𝑝log2𝑝



§2.2  Binary Symmetric Channel (BSC)

 Intuition: If 0 and 1 experience the same degree of channel impairment, i.e., 𝑃 𝑦 = 1 𝑥 = 0 =
𝑃(𝑦 = 0|𝑥 = 1), there is no need to prioritize either 0 or 1 for transmission and  𝑃 𝑥 = 0 =

𝑃 𝑥 = 1 =
1

2
.

 𝐶 = 1 − 𝐻(𝑌|𝑋), if 𝑃 𝑥 = 0 = 𝑃 𝑥 = 1 =
1

2
.

 𝐻 𝑌|𝑋 = −𝑃(𝑦 = 0|𝑥 = 0) ∙
1

2
∙ log2𝑃(𝑦 = 0|𝑥 = 0)

 𝐶 = 1 + 𝑝log2𝑝 + 1 − 𝑝 log2(1 − 𝑝) bits/symbol

= −𝑃(𝑦 = 1|𝑥 = 0) ∙
1

2
∙ log2𝑃(𝑦 = 1|𝑥 = 0)

= −𝑃(𝑦 = 1|𝑥 = 1) ∙
1

2
∙ log2𝑃(𝑦 = 1|𝑥 = 1)

= −𝑃(𝑦 = 0|𝑥 = 1) ∙
1

2
∙ log2𝑃(𝑦 = 0|𝑥 = 1)

= −𝑝log2𝑝 − 1 − 𝑝 log2(1 − 𝑝)



§2.2  Binary Symmetric Channel (BSC)

 𝐶 = 1 + 𝑝log2𝑝 + 1 − 𝑝 log2(1 − 𝑝) bits/symbol



§2.3  Binary Erasure Channel (BEC)
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 Input:    1  0  0  1  0  1  0  1  0  0 ...

 𝑃 𝑦 = 𝑒 𝑥 = 0 = 𝑃 𝑦 = 𝑒 𝑥 = 1 = 𝑝

 It is a channel model often used in computer networks. Data packets are either 

perfectly received or lost.

Output: 1 e 0 1 0 e 0 e 0 e ...

𝑃 𝑦 = 0 𝑥 = 0 = 𝑃 𝑦 = 1 𝑥 = 1 = 1 − 𝑝



§2.3  Binary Erasure Channel (BEC)

1 - p

p

p

1 1

0 0
1 - p

X Y

e

 Similar to the analytic intuition of BSC, channel capacity is reached when 𝑃 𝑥 = 0 =

𝑃 𝑥 = 1 =
1

2
.

 Since 𝑃 𝑦 = 0 = 𝑃 𝑦 = 1 =
1

2
(1 − 𝑝) and 𝑃 𝑦 = 𝑒 = 𝑝

𝐻 𝑌 = − 𝑦∈𝑌𝑃 𝑦 log2𝑃(𝑦)

= −𝑃 𝑦 = 0 log2𝑃(𝑦 = 0) −𝑃 𝑦 = 𝑒 log2𝑃(𝑦 = 𝑒) −𝑃 𝑦 = 1 log2𝑃(𝑦 = 1)

= −
1

2
(1 − 𝑝)log2

1

2
(1 − 𝑝) −𝑝log2𝑝 −

1

2
(1 − 𝑝)log2

1

2
(1 − 𝑝)

= − (1 − 𝑝)log2
1

2
(1 − 𝑝) −𝑝log2𝑝

 Hence 𝐶 = 𝐻 𝑌 − 𝐻(𝑌|𝑋) bits/symbol



§2.3  Binary Erasure Channel (BEC)

 𝐻 𝑌|𝑋 = − 𝑥∈𝑋 𝑦∈𝑌𝑃 𝑦|𝑥 𝑃(𝑥)log2𝑃(𝑦|𝑥)

= −𝑃 𝑦 = 0|𝑥 = 0 ∙
1

2
∙ log2𝑃(𝑦 = 0|𝑥 = 0)

−𝑃 𝑦 = 1|𝑥 = 1 ∙
1

2
∙ log2𝑃(𝑦 = 1|𝑥 = 1)

−𝑃 𝑦 = 𝑒|𝑥 = 0 ∙
1

2
∙ log2𝑃(𝑦 = 𝑒|𝑥 = 0)

−𝑃 𝑦 = 𝑒|𝑥 = 1 ∙
1

2
∙ log2𝑃(𝑦 = 𝑒|𝑥 = 1)

= −(1 − 𝑝)log2(1 − 𝑝) −𝑝log2𝑝

 𝐶 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

= 1 − 𝑝 bits/symbol



§2.3  Binary Erasure Channel (BEC)

 𝐶 = 1 − 𝑝 bits/symbol



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Channel model 𝑦𝑖 = 𝑥𝑖 + 𝑛𝑖

 It is a more realistic wireless channel model where the transmitted signal is impaired 

by noise.

 It is adopted to represent the space communication channel where light-of-sight (LoS) 

transmission is always ensured. 

 It is also often used as a common platform for channel code comparison.

Input

X

Output

Y

Noise

N

𝑥𝑖: discrete input signal, a modulated signal

𝑛𝑖: white Gaussian noise as 𝒩(0, 𝜎𝑁
2), independent of 𝑥𝑖

𝑦𝑖: continuous output signal, a variation of 𝑥𝑖



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Channel model 𝑦𝑖 = 𝑥𝑖 + 𝑛𝑖

 Mutual Information: 𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

 Capacity: 𝐶

Input

X

Output

Y

Noise

N

= 𝐻 𝑌 − 𝐻 𝑋 + 𝑁 𝑋

= 𝐻 𝑌 − 𝐻(𝑁|𝑋)

= 𝐻 𝑌 − 𝐻(𝑁)

= max
𝑃(𝑥)
{𝐻 𝑌 − 𝐻 𝑁 }

= max
𝑃(𝑥)
{𝐼(𝑋, 𝑌)}



§2.4  Additive White Gaussian Noise (AWGN) Channel

 For AWGN:𝒩 0, 𝜎𝑁
2 . Its pdf is

𝑃 𝑛 =
1

2𝜋𝜎𝑁
exp −

𝑛2

2𝜎𝑁
2

𝐻 𝑁 = − 
−∞

+∞

𝑃 𝑛 log2𝑃 𝑛 d𝑛

= − 
−∞

+∞ 1

2𝜋𝜎𝑁
exp −

𝑛2

2𝜎𝑁
2 log2

1

2𝜋𝜎𝑁
exp −

𝑛2

2𝜎𝑁
2 d𝑛

=
1

2
log2(2𝜋𝑒𝜎𝑁

2) bits/symbol

 If input X is normal distributed (continuous) as 𝒩 𝜇𝑋, 𝜎𝑋
2 , 𝐼(𝑋, 𝑌) will be 

maximized and  

𝐶 = 𝐻 𝑌 − 𝐻(𝑁)



§2.4  Additive White Gaussian Noise (AWGN) Channel

 For Input:𝒩 𝜇𝑋, 𝜎𝑋
2 . Its pdf is

𝑃 𝑥 =
1

2𝜋𝜎𝑋
exp −

(𝑥 − 𝜇𝑋)
2

2𝜎𝑋
2

𝐻 𝑋 = − 
−∞

+∞

𝑃 𝑥 log2𝑃 𝑥 d𝑥

= − 
−∞

+∞ 1

2𝜋𝜎𝑋
exp −

𝑥 − 𝜇𝑋
2

2𝜎𝑋
2 log2

1

2𝜋𝜎𝑋
exp −

(𝑥 − 𝜇𝑋)
2

2𝜎𝑋
2 d𝑥

=
1

2
log2(2𝜋𝑒𝜎𝑋

2) bits/symbol

 Since 𝑌 = 𝑋 + 𝑁 and X and N are independent

𝐻 𝑌 =
1

2
log2(2𝜋𝑒(𝜎𝑋

2 + 𝜎𝑁
2))

Output: 𝒩 𝜇𝑋, 𝜎𝑋
2 + 𝜎𝑁

2 = 𝒩 𝜇𝑋, 𝜎𝑌
2

bits/symbol



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Channel model: 𝑦𝑖 = 𝑥𝑖 + 𝑛𝑖

 Capacity: 𝐶 = 𝐻 𝑌 − 𝐻(𝑁)

=
1

2
log2 2𝜋𝑒 𝜎𝑋

2 + 𝜎𝑁
2 −
1

2
log2(2𝜋𝑒𝜎𝑁

2)

bits/symbol

 𝜎𝑋
2 is the power of the transmitted signal, while 𝜎𝑁

2 is the power of noise. Hence, 

𝜎𝑋
2

𝜎𝑁
2 is often defined as the signal-to-noise ratio (SNR).

 This only defines the inachievable transmission limit since in practice, X will not 

be normal distributed.

=
1

2
log2 1 +

𝜎𝑋
2

𝜎𝑁
2



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Band Limited AWGN Channel

 In a practical system, sampling is needed at the receiver to reconstruct the received 

signal as Fig. 1.

 If the signal has a frequency of W, the sampling frequency should be at least 2W for 

perfect signal reconstruction. (Fig. 2)

Fig. 1 Received Signal and Sampling Fig. 2 Signal Sampling in frequency domain



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Band Limited AWGN Channel

 With the sampling, we now have a series of time discrete Gaussian samples and the 

channel model becomes

 Signal 𝑥 𝑡 =
𝑠

2𝑊
has variance 𝜎𝑋

2

𝑦 𝑡 =
𝑠

2𝑊
= 𝑥 𝑡 =

𝑠

2𝑊
+ 𝑛 𝑡 =

𝑠

2𝑊
, 𝑠 = 1, 2,⋯

 Capacity for each time discrete Gaussian channel 

𝐶𝑠 =
1

2
log2 1 +

2𝜎𝑋
2

𝑁0
bits/symbol

Noise 𝑛 𝑡 =
𝑠

2𝑊
has variance 

𝑁0

2
, where 𝑁0 is the noise power



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Band Limited AWGN Channel

 Capacity of this band limited AWGN channel can be determined by

 Since the average signal power

𝐶 =
 𝑠=1
2𝑊𝑇 𝐶𝑠
𝑇

 Capacity of band limited AWGN channel becomes

𝐶 =
2𝑊𝑇 ∙

1
2 log2 1 +

𝐸
𝑊𝑁0

𝑇
= 𝑊log2 1 +

𝐸

𝑊𝑁0
bits/second

, T–sampling duration

𝐸 =
2𝑊𝑇 ∙ 𝜎𝑋

2

𝑇
= 2𝑊𝜎𝑋

2

𝐶𝑠 =
1

2
log2 1 +

𝐸

𝑊𝑁0
bits/symbol



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Shannon Limit: Error free transmission over the Gaussian channel is possible if 

the signal-to-noise ratio 
𝐸𝑏

𝑁0
is at least -1.6 dB.

Proof:  This possibility is sealed by the use of channel code (information length 

k bits, codeword length n bits).

 Let Eb and Ec denote the energy of each information bit and each coded 

bit, respectively. It is required

𝑘 ∙ 𝐸𝑏 = 𝑛 ∙ 𝐸𝑐
so that adding redundancy does not increase the transmission energy. 

 Consider each coded bit is carried by a modulated signal, e.g., using 

binary phase shift keying (BPSK),

𝐸 = 𝐸𝑐 =
𝐸𝑏 ∙ 𝑘

𝑛
= 𝐸𝑏 ∙ 𝑟



§2.4  Additive White Gaussian Noise (AWGN) Channel

Continue the Proof

 Assume the signal frequency𝑊 → ∞

𝐶 = lim
𝑊→∞
𝑊log2 1 +

𝐸

𝑁0𝑊

bits/second

 For error free transmission, it is required

𝑟 < 𝐶 ⟹
𝐸𝑏
𝑁0
> ln2 = 0.69 = −1.6dB

=
𝐸

𝑁0ln2

=
𝐸𝑏 ∙ 𝑟

𝑁0ln2



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Finite Modulation Alphabets

 In a wireless communication system, digital signal is modulated (mapped) to an 
analog signal for transmission.

 Commonly used modulation schemes include:

BPSK QPSK

8PSK 16QAM



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Finite Modulation Alphabets

 Input 𝑋 ∈ {𝑥1, 𝑥2, … , 𝑥𝑀}, e.g., BPSK M = 2, QPSK M = 4, 8PSK M = 8, 16QAM 

M = 16, ... .

 Channel Capacity

𝐶 = max
𝑃(𝑥)
 

𝑖=1

𝑀

 
𝑦:−∞

+∞

𝑃(𝑥𝑖 , 𝑦)log2
𝑃 𝑥𝑖 𝑦

𝑃(𝑥𝑖)
d𝑦

𝑃 𝑥𝑖 , 𝑦 = 𝑃 𝑦 𝑥𝑖 𝑃(𝑥𝑖)

Since

𝑃 𝑥𝑖|𝑦 =
𝑃 𝑦 𝑥𝑖 𝑃(𝑥𝑖)

𝑃(𝑦)

𝑃 𝑦 =  

𝑖′=1

𝑀

𝑃(𝑦|𝑥𝑖′)𝑃 𝑥𝑖′



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Finite Modulation Alphabets

𝐶 = max
𝑃(𝑥𝑖)
 

𝑖=1

𝑀

𝑃(𝑥𝑖) 
𝑦:−∞

+∞

𝑃 𝑦 𝑥𝑖 log2
𝑃 𝑦 𝑥𝑖

 𝑖′=1
𝑀 𝑃 𝑥𝑖′ 𝑃(𝑦|𝑥𝑖′)

d𝑦

 Assume each modulated symbol is equally likely to be transmitted

𝑃 𝑥𝑖 = 𝑃 𝑥𝑖′ =
1

𝑀
.

 Capacity:

𝐶 =
1

𝑀
 

𝑖=1

𝑀

 
𝑦:−∞

+∞

𝑃 𝑦 𝑥𝑖 log2
𝑃 𝑦 𝑥𝑖

1
𝑀
 𝑖′=1
𝑀 𝑃(𝑦|𝑥𝑖′)

d𝑦 bits/symbol



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Finite Modulation Alphabets

 Over the AWGN Channel 𝑦 = 𝑥𝑖 + 𝑛

𝑃 𝑦|𝑥𝑖 =
1

2𝜋𝜎𝑁
exp −

|𝑦 − 𝑥𝑖|
2

2𝜎𝑁
2

 Capacity:

𝐶 =
1

𝑀
 

𝑖=1

𝑀

𝔼 log2
𝑃 𝑦 𝑥𝑖

1
𝑀
 𝑖′=1
𝑀 𝑃(𝑦|𝑥𝑖′)

=
1

2𝜋𝜎𝑁
exp −

|𝑛|2

2𝜎𝑁
2

= log2𝑀 −
1

𝑀
 

𝑖=1

𝑀

𝔼 log2 

𝑖′=1

𝑀

exp −
|𝑥𝑖 + 𝑛 − 𝑥𝑖′|

2− |𝑛|2

2𝜎𝑁
2 bits/symbol



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Finite Modulation Alphabets



§2.5  Fading Channels

 Channel Model: 𝑦𝑖 = 𝛼𝑖 ∙ 𝑥𝑖 + 𝑛𝑖

If 𝛼𝑖 is Rayleigh distributed following 𝛼𝑖 = |𝛼𝑖|𝑒
𝑗𝜑𝑖, 𝑃(|𝛼𝑖|) = 2|𝛼𝑖|𝑒

−|𝛼𝑖|
2

and 

𝑃 𝜑𝑖 =
1

2𝜋
rect

𝜑𝑖

2𝜋
. It is called the Rayleigh fading channel.

𝑥𝑖

𝛼𝑖 𝑛𝑖

𝑦𝑖

 Fading coefficients 𝛼𝑖 further represent the effect of signal attenuation, signal 

scattering, path loss and multi-path accumulation. 

 It is a channel model often used for urban communications.

 Fading types: 

(1) Fast fading: 𝛼𝑖 changes independently for every 𝑥𝑖.

(2) Quasi-static fading: 𝛼𝑖 remains unchanged during the transmission of a codeword 

and changes independently from codeword to codeword. 

(3) Block fading: 𝛼𝑖 changes independently block by block.



§2.5  Fading Channels

 Assume 𝛼𝑖 are known by both the transmitter and receiver.

 Instantaneous capacity:

𝐶 𝛼𝑖 = 𝑊log2 1 +
𝛼𝑖
2 ∙ 𝑃(𝛼𝑖)

𝑊𝑁0

 Ergodic Capacity:

𝑃(𝛼𝑖): the signal power depending on 𝛼𝑖.

It is the maximal achievable transmission rate defined by a particular fading 

coefficient 𝛼𝑖.

𝐶 = max
𝑃(𝛼𝑖)
𝔼 𝑊log2 1 +

𝛼𝑖
2 ∙ 𝑃(𝛼𝑖)

𝑊𝑁0

It is the average transmission rate that can be realized over all channel states.
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