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§2.1  Introduction

Channel
Input X Output Y

 In a communication system, with the observation of Y, we aim to recover X.

 Mutual Information 𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

 Channel capacity describes the channel’s best capability in reducing the 

uncertainty.

= 𝐻 𝑌 − 𝐻(𝑌|𝑋)

It defines the amount of uncertainty about X that has been reduced thanks 

to the knowledge of Y, and vise versa. This uncertainty discrepancy is 

introduced by the channel. 



§2.1  Introduction

Channel

P(y | x)

Input X Output Y

 Let the realization of input X and output Y be x and y, respectively.

 Channel transition probability P(y | x): knowing x was transmitted, the 

probability of observing y. It defines the quality of channel.

 Channel Capacity

𝐶 = max
𝑃(𝑥)
{𝐼(𝑋, 𝑌)}

The maximum mutual information 𝐼(𝑋, 𝑌) that can be realized over all 

distribution of the input P(x).



§2.1  Introduction

 Channel Capacity: 𝐶 = max
𝑃(𝑥)
{𝐼(𝑋, 𝑌)}

 In a wireless communication system, it is the maximum number of information 

bits that can be carried by a modulated symbol such that the information can be 

recovered with an arbitrarily low probability of error.

 To realize this reliable communications, channel coding is needed. Given k

information symbols (or bits), redundancy is added to obtain n (n > k) codeword 

symbols (or bits). The code rate is 𝑟 =
𝑘

𝑛
. Using binary modulation, e.g., BPSK, 

reliable communications is possible if r < C.



§2.1  Introduction

 Why input distribution P(x) matters?

 Consider the data transmission as human flows from Shenzhen to Hong Kong



§2.2  Binary Symmetric Channel (BSC)

 Input:    0  1  0  0  0  1  1  0  1  0 ...

 Input and output are discrete

 𝑃 𝑦 = 1 𝑥 = 0 = 𝑃 𝑦 = 0 𝑥 = 1 = 𝑝

 It is the simplest model of channel that introduces errors. Many wireless channels 

can be abstracted to BSC.

1 - p

p

p

1 1

0 0
1 - p

X Y

Output: 0 1 1 1 0 0 1 0 0 0 ...

𝑃 𝑦 = 0 𝑥 = 0 = 𝑃 𝑦 = 1 𝑥 = 1 = 1 − 𝑝



§2.2  Binary Symmetric Channel (BSC)

 Analytic intuition 

 When 𝑃 𝑥 = 0 = 𝑃 𝑥 = 1 =
1

2
, 𝐻 𝑌 = 1 and  

1 - p

p
p

1 1

0 0
1 - p

X Y

𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

𝐶 = 1 − 𝐻(𝑌|𝑋) bits/symbol.

𝐼 𝑋, 𝑌 will be maximized if 𝐻 𝑌 is maximized and 𝐻 𝑌|𝑋 is minimized.

(1) 𝐻 𝑌 ≤ 1.

(2) 𝐻 𝑌|𝑋 = − 𝑥∈𝑋 𝑦∈𝑌𝑃 𝑥, 𝑦 log2𝑃(𝑦|𝑥)

= − 𝑥∈𝑋 𝑦∈𝑌𝑃 𝑦|𝑥 𝑃(𝑥)log2𝑃(𝑦|𝑥)

= −𝑃(𝑥 = 0) 𝑦∈{0,1}𝑃 𝑦 𝑥 = 0 log2𝑃(𝑦|𝑥 = 0)

−𝑃(𝑥 = 1) 𝑦∈{0,1}𝑃 𝑦 𝑥 = 1 log2𝑃(𝑦|𝑥 = 1)

= −𝑃(𝑥 = 0)( 1 − 𝑝 log2 1 − 𝑝 + 𝑝log2𝑝) −𝑃(𝑥 = 1)(𝑝log2𝑝 + 1 − 𝑝 log2 1 − 𝑝 )

= −(1 − 𝑝)log2 1 − 𝑝 − 𝑝log2𝑝



§2.2  Binary Symmetric Channel (BSC)

 Intuition: If 0 and 1 experience the same degree of channel impairment, i.e., 𝑃 𝑦 = 1 𝑥 = 0 =
𝑃(𝑦 = 0|𝑥 = 1), there is no need to prioritize either 0 or 1 for transmission and  𝑃 𝑥 = 0 =

𝑃 𝑥 = 1 =
1

2
.

 𝐶 = 1 − 𝐻(𝑌|𝑋), if 𝑃 𝑥 = 0 = 𝑃 𝑥 = 1 =
1

2
.

 𝐻 𝑌|𝑋 = −𝑃(𝑦 = 0|𝑥 = 0) ∙
1

2
∙ log2𝑃(𝑦 = 0|𝑥 = 0)

 𝐶 = 1 + 𝑝log2𝑝 + 1 − 𝑝 log2(1 − 𝑝) bits/symbol

= −𝑃(𝑦 = 1|𝑥 = 0) ∙
1

2
∙ log2𝑃(𝑦 = 1|𝑥 = 0)

= −𝑃(𝑦 = 1|𝑥 = 1) ∙
1

2
∙ log2𝑃(𝑦 = 1|𝑥 = 1)

= −𝑃(𝑦 = 0|𝑥 = 1) ∙
1

2
∙ log2𝑃(𝑦 = 0|𝑥 = 1)

= −𝑝log2𝑝 − 1 − 𝑝 log2(1 − 𝑝)



§2.2  Binary Symmetric Channel (BSC)

 𝐶 = 1 + 𝑝log2𝑝 + 1 − 𝑝 log2(1 − 𝑝) bits/symbol



§2.3  Binary Erasure Channel (BEC)

1 - p

p

p
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0 0
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e

 Input:    1  0  0  1  0  1  0  1  0  0 ...

 𝑃 𝑦 = 𝑒 𝑥 = 0 = 𝑃 𝑦 = 𝑒 𝑥 = 1 = 𝑝

 It is a channel model often used in computer networks. Data packets are either 

perfectly received or lost.

Output: 1 e 0 1 0 e 0 e 0 e ...

𝑃 𝑦 = 0 𝑥 = 0 = 𝑃 𝑦 = 1 𝑥 = 1 = 1 − 𝑝



§2.3  Binary Erasure Channel (BEC)

1 - p

p

p

1 1

0 0
1 - p

X Y

e

 Similar to the analytic intuition of BSC, channel capacity is reached when 𝑃 𝑥 = 0 =

𝑃 𝑥 = 1 =
1

2
.

 Since 𝑃 𝑦 = 0 = 𝑃 𝑦 = 1 =
1

2
(1 − 𝑝) and 𝑃 𝑦 = 𝑒 = 𝑝

𝐻 𝑌 = − 𝑦∈𝑌𝑃 𝑦 log2𝑃(𝑦)

= −𝑃 𝑦 = 0 log2𝑃(𝑦 = 0) −𝑃 𝑦 = 𝑒 log2𝑃(𝑦 = 𝑒) −𝑃 𝑦 = 1 log2𝑃(𝑦 = 1)

= −
1

2
(1 − 𝑝)log2

1

2
(1 − 𝑝) −𝑝log2𝑝 −

1

2
(1 − 𝑝)log2

1

2
(1 − 𝑝)

= − (1 − 𝑝)log2
1

2
(1 − 𝑝) −𝑝log2𝑝

 Hence 𝐶 = 𝐻 𝑌 − 𝐻(𝑌|𝑋) bits/symbol



§2.3  Binary Erasure Channel (BEC)

 𝐻 𝑌|𝑋 = − 𝑥∈𝑋 𝑦∈𝑌𝑃 𝑦|𝑥 𝑃(𝑥)log2𝑃(𝑦|𝑥)

= −𝑃 𝑦 = 0|𝑥 = 0 ∙
1

2
∙ log2𝑃(𝑦 = 0|𝑥 = 0)

−𝑃 𝑦 = 1|𝑥 = 1 ∙
1

2
∙ log2𝑃(𝑦 = 1|𝑥 = 1)

−𝑃 𝑦 = 𝑒|𝑥 = 0 ∙
1

2
∙ log2𝑃(𝑦 = 𝑒|𝑥 = 0)

−𝑃 𝑦 = 𝑒|𝑥 = 1 ∙
1

2
∙ log2𝑃(𝑦 = 𝑒|𝑥 = 1)

= −(1 − 𝑝)log2(1 − 𝑝) −𝑝log2𝑝

 𝐶 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

= 1 − 𝑝 bits/symbol



§2.3  Binary Erasure Channel (BEC)

 𝐶 = 1 − 𝑝 bits/symbol



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Channel model 𝑦𝑖 = 𝑥𝑖 + 𝑛𝑖

 It is a more realistic wireless channel model where the transmitted signal is impaired 

by noise.

 It is adopted to represent the space communication channel where light-of-sight (LoS) 

transmission is always ensured. 

 It is also often used as a common platform for channel code comparison.

Input

X

Output

Y

Noise

N

𝑥𝑖: discrete input signal, a modulated signal

𝑛𝑖: white Gaussian noise as 𝒩(0, 𝜎𝑁
2), independent of 𝑥𝑖

𝑦𝑖: continuous output signal, a variation of 𝑥𝑖



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Channel model 𝑦𝑖 = 𝑥𝑖 + 𝑛𝑖

 Mutual Information: 𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

 Capacity: 𝐶

Input

X

Output

Y

Noise

N

= 𝐻 𝑌 − 𝐻 𝑋 + 𝑁 𝑋

= 𝐻 𝑌 − 𝐻(𝑁|𝑋)

= 𝐻 𝑌 − 𝐻(𝑁)

= max
𝑃(𝑥)
{𝐻 𝑌 − 𝐻 𝑁 }

= max
𝑃(𝑥)
{𝐼(𝑋, 𝑌)}



§2.4  Additive White Gaussian Noise (AWGN) Channel

 For AWGN:𝒩 0, 𝜎𝑁
2 . Its pdf is

𝑃 𝑛 =
1

2𝜋𝜎𝑁
exp −

𝑛2

2𝜎𝑁
2

𝐻 𝑁 = − 
−∞

+∞

𝑃 𝑛 log2𝑃 𝑛 d𝑛

= − 
−∞

+∞ 1

2𝜋𝜎𝑁
exp −

𝑛2

2𝜎𝑁
2 log2

1

2𝜋𝜎𝑁
exp −

𝑛2

2𝜎𝑁
2 d𝑛

=
1

2
log2(2𝜋𝑒𝜎𝑁

2) bits/symbol

 If input X is normal distributed (continuous) as 𝒩 𝜇𝑋, 𝜎𝑋
2 , 𝐼(𝑋, 𝑌) will be 

maximized and  

𝐶 = 𝐻 𝑌 − 𝐻(𝑁)



§2.4  Additive White Gaussian Noise (AWGN) Channel

 For Input:𝒩 𝜇𝑋, 𝜎𝑋
2 . Its pdf is

𝑃 𝑥 =
1

2𝜋𝜎𝑋
exp −

(𝑥 − 𝜇𝑋)
2

2𝜎𝑋
2

𝐻 𝑋 = − 
−∞

+∞

𝑃 𝑥 log2𝑃 𝑥 d𝑥

= − 
−∞

+∞ 1

2𝜋𝜎𝑋
exp −

𝑥 − 𝜇𝑋
2

2𝜎𝑋
2 log2

1

2𝜋𝜎𝑋
exp −

(𝑥 − 𝜇𝑋)
2

2𝜎𝑋
2 d𝑥

=
1

2
log2(2𝜋𝑒𝜎𝑋

2) bits/symbol

 Since 𝑌 = 𝑋 + 𝑁 and X and N are independent

𝐻 𝑌 =
1

2
log2(2𝜋𝑒(𝜎𝑋

2 + 𝜎𝑁
2))

Output: 𝒩 𝜇𝑋, 𝜎𝑋
2 + 𝜎𝑁

2 = 𝒩 𝜇𝑋, 𝜎𝑌
2

bits/symbol



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Channel model: 𝑦𝑖 = 𝑥𝑖 + 𝑛𝑖

 Capacity: 𝐶 = 𝐻 𝑌 − 𝐻(𝑁)

=
1

2
log2 2𝜋𝑒 𝜎𝑋

2 + 𝜎𝑁
2 −
1

2
log2(2𝜋𝑒𝜎𝑁

2)

bits/symbol

 𝜎𝑋
2 is the power of the transmitted signal, while 𝜎𝑁

2 is the power of noise. Hence, 

𝜎𝑋
2

𝜎𝑁
2 is often defined as the signal-to-noise ratio (SNR).

 This only defines the inachievable transmission limit since in practice, X will not 

be normal distributed.

=
1

2
log2 1 +

𝜎𝑋
2

𝜎𝑁
2



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Band Limited AWGN Channel

 In a practical system, sampling is needed at the receiver to reconstruct the received 

signal as Fig. 1.

 If the signal has a frequency of W, the sampling frequency should be at least 2W for 

perfect signal reconstruction. (Fig. 2)

Fig. 1 Received Signal and Sampling Fig. 2 Signal Sampling in frequency domain



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Band Limited AWGN Channel

 With the sampling, we now have a series of time discrete Gaussian samples and the 

channel model becomes

 Signal 𝑥 𝑡 =
𝑠

2𝑊
has variance 𝜎𝑋

2

𝑦 𝑡 =
𝑠

2𝑊
= 𝑥 𝑡 =

𝑠

2𝑊
+ 𝑛 𝑡 =

𝑠

2𝑊
, 𝑠 = 1, 2,⋯

 Capacity for each time discrete Gaussian channel 

𝐶𝑠 =
1

2
log2 1 +

2𝜎𝑋
2

𝑁0
bits/symbol

Noise 𝑛 𝑡 =
𝑠

2𝑊
has variance 

𝑁0

2
, where 𝑁0 is the noise power



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Band Limited AWGN Channel

 Capacity of this band limited AWGN channel can be determined by

 Since the average signal power

𝐶 =
 𝑠=1
2𝑊𝑇 𝐶𝑠
𝑇

 Capacity of band limited AWGN channel becomes

𝐶 =
2𝑊𝑇 ∙

1
2 log2 1 +

𝐸
𝑊𝑁0

𝑇
= 𝑊log2 1 +

𝐸

𝑊𝑁0
bits/second

, T–sampling duration

𝐸 =
2𝑊𝑇 ∙ 𝜎𝑋

2

𝑇
= 2𝑊𝜎𝑋

2

𝐶𝑠 =
1

2
log2 1 +

𝐸

𝑊𝑁0
bits/symbol



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Shannon Limit: Error free transmission over the Gaussian channel is possible if 

the signal-to-noise ratio 
𝐸𝑏

𝑁0
is at least -1.6 dB.

Proof:  This possibility is sealed by the use of channel code (information length 

k bits, codeword length n bits).

 Let Eb and Ec denote the energy of each information bit and each coded 

bit, respectively. It is required

𝑘 ∙ 𝐸𝑏 = 𝑛 ∙ 𝐸𝑐
so that adding redundancy does not increase the transmission energy. 

 Consider each coded bit is carried by a modulated signal, e.g., using 

binary phase shift keying (BPSK),

𝐸 = 𝐸𝑐 =
𝐸𝑏 ∙ 𝑘

𝑛
= 𝐸𝑏 ∙ 𝑟



§2.4  Additive White Gaussian Noise (AWGN) Channel

Continue the Proof

 Assume the signal frequency𝑊 → ∞

𝐶 = lim
𝑊→∞
𝑊log2 1 +

𝐸

𝑁0𝑊

bits/second

 For error free transmission, it is required

𝑟 < 𝐶 ⟹
𝐸𝑏
𝑁0
> ln2 = 0.69 = −1.6dB

=
𝐸

𝑁0ln2

=
𝐸𝑏 ∙ 𝑟

𝑁0ln2



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Finite Modulation Alphabets

 In a wireless communication system, digital signal is modulated (mapped) to an 
analog signal for transmission.

 Commonly used modulation schemes include:

BPSK QPSK

8PSK 16QAM



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Finite Modulation Alphabets

 Input 𝑋 ∈ {𝑥1, 𝑥2, … , 𝑥𝑀}, e.g., BPSK M = 2, QPSK M = 4, 8PSK M = 8, 16QAM 

M = 16, ... .

 Channel Capacity

𝐶 = max
𝑃(𝑥)
 

𝑖=1

𝑀

 
𝑦:−∞

+∞

𝑃(𝑥𝑖 , 𝑦)log2
𝑃 𝑥𝑖 𝑦

𝑃(𝑥𝑖)
d𝑦

𝑃 𝑥𝑖 , 𝑦 = 𝑃 𝑦 𝑥𝑖 𝑃(𝑥𝑖)

Since

𝑃 𝑥𝑖|𝑦 =
𝑃 𝑦 𝑥𝑖 𝑃(𝑥𝑖)

𝑃(𝑦)

𝑃 𝑦 =  

𝑖′=1

𝑀

𝑃(𝑦|𝑥𝑖′)𝑃 𝑥𝑖′



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Finite Modulation Alphabets

𝐶 = max
𝑃(𝑥𝑖)
 

𝑖=1

𝑀

𝑃(𝑥𝑖) 
𝑦:−∞

+∞

𝑃 𝑦 𝑥𝑖 log2
𝑃 𝑦 𝑥𝑖

 𝑖′=1
𝑀 𝑃 𝑥𝑖′ 𝑃(𝑦|𝑥𝑖′)

d𝑦

 Assume each modulated symbol is equally likely to be transmitted

𝑃 𝑥𝑖 = 𝑃 𝑥𝑖′ =
1

𝑀
.

 Capacity:

𝐶 =
1

𝑀
 

𝑖=1

𝑀

 
𝑦:−∞

+∞

𝑃 𝑦 𝑥𝑖 log2
𝑃 𝑦 𝑥𝑖

1
𝑀
 𝑖′=1
𝑀 𝑃(𝑦|𝑥𝑖′)

d𝑦 bits/symbol



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Finite Modulation Alphabets

 Over the AWGN Channel 𝑦 = 𝑥𝑖 + 𝑛

𝑃 𝑦|𝑥𝑖 =
1

2𝜋𝜎𝑁
exp −

|𝑦 − 𝑥𝑖|
2

2𝜎𝑁
2

 Capacity:

𝐶 =
1

𝑀
 

𝑖=1

𝑀

𝔼 log2
𝑃 𝑦 𝑥𝑖

1
𝑀
 𝑖′=1
𝑀 𝑃(𝑦|𝑥𝑖′)

=
1

2𝜋𝜎𝑁
exp −

|𝑛|2

2𝜎𝑁
2

= log2𝑀 −
1

𝑀
 

𝑖=1

𝑀

𝔼 log2 

𝑖′=1

𝑀

exp −
|𝑥𝑖 + 𝑛 − 𝑥𝑖′|

2− |𝑛|2

2𝜎𝑁
2 bits/symbol



§2.4  Additive White Gaussian Noise (AWGN) Channel

 Finite Modulation Alphabets



§2.5  Fading Channels

 Channel Model: 𝑦𝑖 = 𝛼𝑖 ∙ 𝑥𝑖 + 𝑛𝑖

If 𝛼𝑖 is Rayleigh distributed following 𝛼𝑖 = |𝛼𝑖|𝑒
𝑗𝜑𝑖, 𝑃(|𝛼𝑖|) = 2|𝛼𝑖|𝑒

−|𝛼𝑖|
2

and 

𝑃 𝜑𝑖 =
1

2𝜋
rect

𝜑𝑖

2𝜋
. It is called the Rayleigh fading channel.

𝑥𝑖

𝛼𝑖 𝑛𝑖

𝑦𝑖

 Fading coefficients 𝛼𝑖 further represent the effect of signal attenuation, signal 

scattering, path loss and multi-path accumulation. 

 It is a channel model often used for urban communications.

 Fading types: 

(1) Fast fading: 𝛼𝑖 changes independently for every 𝑥𝑖.

(2) Quasi-static fading: 𝛼𝑖 remains unchanged during the transmission of a codeword 

and changes independently from codeword to codeword. 

(3) Block fading: 𝛼𝑖 changes independently block by block.



§2.5  Fading Channels

 Assume 𝛼𝑖 are known by both the transmitter and receiver.

 Instantaneous capacity:

𝐶 𝛼𝑖 = 𝑊log2 1 +
𝛼𝑖
2 ∙ 𝑃(𝛼𝑖)

𝑊𝑁0

 Ergodic Capacity:

𝑃(𝛼𝑖): the signal power depending on 𝛼𝑖.

It is the maximal achievable transmission rate defined by a particular fading 

coefficient 𝛼𝑖.

𝐶 = max
𝑃(𝛼𝑖)
𝔼 𝑊log2 1 +

𝛼𝑖
2 ∙ 𝑃(𝛼𝑖)

𝑊𝑁0

It is the average transmission rate that can be realized over all channel states.
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