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% 1.1 An Introduction of Information

.
« What is information?

« How do we measure information?

Let us look at the following sentences:
1) 1 will be one year older next year.

No information Boring!
2) | was born in 1993.
Some information Being frank!
3) I'was born in 1990s.
More information Interesting, so which year?

The number of possibilities should be linked to the information!




% 1.1 An Introduction of Information

et us do the following game:

Throw a die once
s You have 6 possible outcomes.

000 {1, 2,3,4,5, 6}
A

Throw three dies

You have 63 possible outcomes.
(1, 1,1),(1,1,2),(,1,3), (1, 1,4)

io" ?

30’ (29 19 1)9 (29 192)9 (29 153)5 (2: 154)

(6,6, 3),(6,6,4),(6,6,5),(6,6,6)}

Information should be ‘additive’.




% 1.1 An Introduction of Information

|
et us look at the following problem.

If there are 30 students in our class, and we would like to use binary bits to
distinguish each of them, how many bits do we need?
Solution: 30 possibilities.
requires
log, 30=4.907 bits.
we need at least 5 bits to represent each of us.
Q: There are 7 billion people on our planet, how many bits do we need?

We can use ‘logarithm’ to scale down the a huge amount of
possibilities.

Number (binary bit) permutations are used to represent all
possibilities.




% 1.1 An Introduction of Information

Finally, let us look into the following game.

Pick one ball from the hat randomly,

The probability of picking up a white ball, % (25%).
Representing the probability needS

log, % = 2 bits.

/4

The probability of picking up a black ball, % (75%).
Representing the probability needs

log, % = 0.415 bits.




§ 1.1 An Introduction of Information

o ————————————————————— |
® How do we measure the overall event? (On average, how

many bits do we need to represent an outcome? )
1 1 . 3 1 .
T log, v + Zlogz 3, = 0.811 bits.
® The measure of information should be
Yicq Pilog, Pt = — 3L, Pilog, P,

* P;: probability of the ith possible event.
* N: Total number of possible events.

Measure of information should consider the probabilities of various
possible events.




§ 1.2 Entropy

Information: knowledge not precisely known by the recipient, as it is a
measure of unexpectedness.

- Amount of information o (probability of occurance) ™!
- Messages: M, My, Mj ... .. M

Prr ot

Prob of occur: P; P, Ps3 ... P, (Pr+Py+P3+--+PF=1)
Measure the amount of information carried by each
message by
I(M;) =log, P, i=12,..,q
x = 2, I(M;) in bits
x = e, I(M;) in nats
x = 10, I(M;) in Hartley.

N

® Observations: ... ...



§ 1.2 Entropy

Observations:

1) I(M;) -0, if P,-1;

2) I(M;) =0, when 0<P; <1;

3) IM) >1(M;), if P>P

4) Given M; and M; are statistically independent,
I(M;&M;) = I(M)) + I(M)).



§ 1.2 Entropy
T —S—S—S—_—_..

Example 1.1: A source outputs five possible messages. The probabilities of these
messages are:

1 1 1 1 1
Ph=- Pb==- Pyo==- P=— Pc=—.
175 274 %37 g "M 7T 16 57 16

Determine the information contained in each of these messages.

Solution:

I(M;) = log, %2 =1 bit
I(M,) = logZ%4 = 2 bit
I1(M3) = log2%8 = 3 bit
I(M,) = 10gz%16 = 4 bit
I(Ms) = log2%16 = 4 bit

Total amount of information = 14 bits. Is it right?



§ 1.2 Entropy

————————————————
Given a source vector of length N, and it has U possible symbols
51,85, ... Sy, each of which has probability of P;,P,,... Py of
occurrence.

To represent the source vector, we need

I =Y, NP;log,P " bits.

So on average, how many information bits do we need for a source

symbol?
I —

H=— > . P;log,Pi* bits/symbol

H is called the source entropy — average number of
information per source symbol.




§ 1.2 Entropy

Example 1.2: A source vector contains symbols of four

possible outcomes A, B, C, D. They occur with

el 1 1 1 1 .
probabilities of =, =, = and —, respectively.
4’ 3’ 3 12

Determine the entropy of the source vector.

1 1 2l 1 N 11 1
— 1 _Og21 ngl_
4 /4 3 /3 12 /12

= 1.856 bits/symbol



§ 1.2 Entropy

Entropy of a binary source: The source vector has only two
possible symbols, 1.e., 0 and 1. Let P(0) denote the probability
of a source symbol being 0, and P (1) denote the probability of a
source symbol being 1, we have

H = P(0) -log,P(0)~1 + P(1)log,P (1)1
or
H = P(0) - logy P(0)™" + (1 — P(0)) - log, (1 — P(0))~*

/

Binary Entropy Function




§ 1.2 Entropy
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§ 1.2 Entropy

e Entropy for two random variables X and Y.
e Realizations of X and Y are x and y.
e Distributions of X and Y are P(x) and P(y).

Joint Entropy H(X, Y): Given a joint distribution P(X, y),
HIXY) = = ) ) P(x,y)log,P(x,)

xX€EX YEY

Condition Entropy H (Y |X):
H(Y|X) = 2 PGOH(Y|X = )

XEX

- _ z Z P(x)P(y|x)log,P(y|x)

XEX YEY



§ 1.2 Entropy

The Chain Rule (Relationship between Joint Entropy and Conditional Entropy)
H(X,Y) =H(X) + HY|X)
= H(Y) + H(X|Y)

Proof:
HX,Y) = — z Z P(x,y)log,P(x,y)

XEX yEY

- z z P(x, y)log, (P(y|x)P(x))

XEX YEY

= — z z P(x,y)log,P(x) — z 2 P(x,y)log,P(y|x)

XEX yEY XEX yeY
= — z P(x)log,P(x) — 2 Z P(x, y)log,P(y|x)
x€X xXeX yEY

= H(X) + H(Y|X)



§ 1.3 Mutual Information

S
e Two random variables X and Y.
e Realizations of X and Y are x and y.
e Distributions of X and Y are P(x) and P(y).
e Joint distribution of X and Y is P(X, y).
e Conditional distribution of X is P(x|y).

Mutual Information between X and Y:

P
1Y) = ) ) PG, ylog, (x1)

XEX yeEY P(x)




§ 1.3 Mutual Information

Mutual Information’s Relationship with Entropy:
IX,Y)=HX)+HY)—-H(X,Y)

Proof: P(x,y)
) — ) l :
10X, 1) ;;P(x P08z eSS
= Z Z P(x,y)log,P(x,y) — Z P(x)log,P(x) — Z P(y)log,P(y)
XEX yEY XEX yEY

= H(X) + H(Y) — H(X,Y)

Remark: The above proof also shows the symmetry of mutual information as

IX,Y)=1(Y,X)



§ 1.3 Mutual Information

Mutual Information’s Relationship with Entropy:
IX,Y)=HX)+HY)—-H(X,Y)

This relationship can be visualized in the Venn diagram

I(X,Y)

H(X) H(Y)

H(X,Y)
Fig. A Venn diagram



§ 1.3 Mutual Information

e
I(X,Y)

H(X) H(Y)

H(X,Y)

Fig. A Venn diagram
Corollary:

I(X,Y) = H(X) — HX|Y)

= H(Y) — H(Y|X)

This can also be concluded using the Chain Rule.
Boundson I(X,Y)

0 <I(X,Y) <min{H(X),H(Y)}



§ 1.3 Mutual Information

Mutual Information of A Channel

Source L Channel —Y> Sink

- Consider X is the transmitted signal, Y is the received signal.
- Y isavariant of X where the discrepancy is introduced by channel.

H(X) — H(X|Y)

How much we don’t know BEFORE | ‘ How much we still don’t kno_w
the channel observations. — AFTER the channel observations.

How much information is carried by the channel, and this is called the
Mutual Information|of the channel, denoted as I(X,Y).

Remark: Mutual information I(X, Y) describes the amount of information one variable
X contains about the other Y, or vice versa as in I(Y, X).



§ 1.3 Mutual Information

B TTTTTTTTTTTTTTTTEEmESSSS
Example 1.3: Given the binary symmetric channel shown as

1 1

We know P(x =0) =03, P(x=1)=0.7, P(y =1|x =1) = 0.8,
P(y=1|x=0)=10.2, Py=0|x=1) =0.2 and P(y = 0|x = 0) = 0.8.
Please determine the mutual information of such a channel.
Solution:
- Entropy of the binary source is

H(x) =—-P(x=0)log, P(x=0)—P(x=1)log, P(x =1)
1 1
=0.3" logzﬁ + 0.7 - log, 07
= (0.881 bits



§ 1.3 Mutual Information

- With P(x) and P(y|x), we know
Py=1)=Py=1lx=1)P(x=1)+P(y=1|x =0)P(x = 0)

= 0.62
Py=0)=Py=0lx=1)P(x=1)+P(y=0x=0)P(X =0)
= 0.38
P(x=0,y=0)=P(y =0|x=0)-P(x =0) =0.24
P(x=0,y=0
P(x =0y =0) = (;f(yj;) ) — 0.63
Px=1y=0) = f(@f 00|)x =1)-P(x=1) = 0.14
xX=1vy=
Px=1ly=0) = P(yj;) = (.37
Px=0,y=1) = f(@(]: 11|)x = 0)P(x = 0) = 0.06
x=0,y=
Px=0ly=1) = p(yjl) = 0.10
Px=1y=1)=P@y=1|x=1)P(x=1) = 0.56
Px=1y=1)
Px=1ly=1) = = 0.90

P(y=1)



§ 1.3 Mutual Information

* Hence, the conditional entropy is:

1 1
H(X|Y):P(x:O,Y:O)I092P(X:O|yzo)+P(X=1,y=0)|092P(lelyzo)
1
P :O, =1l P =l, =1l
B e v R T Y

1 1 1 1
=0.24log, ——+0.14log,—— +0.06log, —— + 0.56log, ——
92563 92537 92510 92590

= 0.644bits/sym

e The mutual information is;

1(X,Y)=H(X)=H(X |Y) = 0.237bits



S 1.4 Further Results on Information Theory
B TTTTTTTTTTTTTTTTEEmESSSS

Relative Entropy: Assume X and X are two random variables with realizations of x and &,
respectively. They aim to describe the same event, with probability mass functions of P(x)
and P(X), respectively. Their relative entropy is

. P(x)
D(PCO,P®) = ) P(log, 5
P(x)
X€Esupp P(x)
P(x)
= E [logz P )
- It is often called the Kullback-Leibler distance between two distributions P(x) and

P(X).

- It is a measure of inefficiency by assuming a distribution P(X) when the true
distribution is P(x). E.g., an event can be described by an average length of H(P(x))
bits. However, if we assume its distribution is P(X), we will need an average length
of H(P(x)) + D(P(x), P(%)) bits to describe it.

- Itis not symmetric as D(P(x), P(%)) # D(P(%), P(x)).



S 1.4 Further Results on Information Theory

B
- Corollary 1: When P(x) = P(%), D(P(x),P(®)) = 0.
- Corollary 2: D(P(x), P(2)) = 0.

Proof: P(%)
~D(P(x),P()) = z P(x)loga 53

xesupp P(x)

P(%)
P(x)

< Z P(x) ( — 1) log, e

x€supp P(x)

<

P(x) — z P(x)) log, e

(xEsupp P(x) x€esupp P(x)
< (1-1)log,e

=0



S 1.4 Further Results on Information Theory

Example 1.4: The true distribution P(x) is given. If we assume a distribution of P(X;) =
fori = 1,2, ..., k to describe the same event, then

x)
P(x

D(P(x),P(%)) =E [logz ] E[log,kP(x)]

= E[log,k] + E[log,P(x)]
= log,k — H(P(x))

= H(P(®)) — H(P(x))



S 1.4 Further Results on Information Theory

Convex Function: A function f(x) is convex over the interval (a, b) if Vx4, x, € (a, b) and
0<A1<1,

fAx; + (1 = Dxy) < Af(xq) + (1 = D f (x2).

It is strictly convex if the equality holds when A =0 orA = 1.

- If f(x) is convex, —f(x) is concave.
- Example 1.5: log, i Is strictly convex over (0, o).

Letx, =2,x, =5and A = 0.5,

1
1 — 181
082 5% 2+05x5

1 1
0.5 X logzz + 0.5 X logzg = —1.66

When A = 0 or A = 1, the equality holds.
Note that log,x IS concave.



S 1.4 Further Results on Information Theory

|
Jensen’s Inequality: If function f(x) is convex, then

f(E[x]) < E[f(x)].

Proof: With two mass points x; and x, and distributions of p; and p,, the convexity implies

f(1x1 + 02x3) < pif(x1) + p2f (x2).

Assume this is also true for k — 1 mass points that

f@1x1 + -+ Dr—1Xk—1) S D1f(x1) + -+ D1 f (Xp—1)-

Therefore, for k mass points, we have

k
D i () 2 pif O) + F(pyx + -+ Pra o).
i=1



S 1.4 Further Results on Information Theory

Letp] = 1f;k, fori=12,...k—1

k-1
pif (x;) = prf(xx) + (1 —pr)f <z Pi'xi>
i=1

k—1
= | Prxi + Z(l — Pr)Di X
i=1
k-1
= f| Pexx + z DiX;
i=1

k
= f( Pixi>
i=1

k
i=1



S 1.4 Further Results on Information Theory

- Jensen’s inequality can be applied to prove some properties on entropy.
- Consequence 1: D(P(x),P(%)) =0

Proof: P(%
~D(P(x),P(2)) = z P(x) log, Pgi

x€esupp P(x)

xesupp P(x)

<log,1=0
- Consequence 2: I(X,Y) =0
Proof: P(x,y
IX,Y) = z z P(x,y)log, P(;E)P())
XEX yEY Y

=D(P(x,y),P(x)P(y)) = 0
I(X,Y)=0onlyif P(x,y) = P(x)P(y), i.e.,, Xand Y are independent.



S 1.4 Further Results on Information Theory

B TTTTTTTTTTTTTTTTEEmESSSS
Fano’s Inequality: Let X and Y are two random variables with realizations in {x, x,, ... x; }.
Let P, = Pr[X +# Y], then

H(X|Y) < H(P,) + P,log,(k — 1).

Proof: Let us create a binary variable Z such that
Z=0,ifXx =Y.
Z=1ifX=+#Y.

Hence, H(Z) = H(P,).
H(XZ|Y) = HX|Y) + H(Z|XY) = H(X|Y)

Note, with the knowledge of X and Y, Z is deterministic.



S 1.4 Further Results on Information Theory

H(XZ|Y) = H(Z|Y) + H(X|YZ)
< H(Z)+ H(X|YZ)

Note,
H(X|Y,Z =0) =0,
H(X|Y,Z = 1) = log,(k — 1),
HX|Y) < H(Z) + Plog,(k — 1).

- H(X|Y) implies with the knowledge of Y, how much uncertainty is left about X (X
and Y are related);

- H(P,): numbers of bits to describe X whenever X = Y;

- log,(k — 1): number of bits to describe X whenever X # Y.



S 1.4 Further Results on Information Theory

B TTTTTTTTTTTTTTTTEEmESSSS
Data Processing Inequality: Given a concatenated data processing system as

v

Processor 1 Processor 2

We have

I(X, V)
I(X,2) < { 1Y 2)



S 1.4 Further Results on Information Theory

Proof:

1(X,Z) =HX) - H(X|2)
<HX)—-H(X|ZY)
= H(X) — HX|Y)
=I1(X,Y)

1(X,2) = H(Z) — H(Z|X)
< H(Z) — H(Z|XY)
= H(Z) — H(Z|Y)
=1(Y,2)

Remark: Information cannot be increased by data processing.
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