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Chapter 1 Entropy and Mutual Information

• 1.1 An Introduction of Information

• 1.2 Entropy

• 1.3 Mutual Information

• 1.4 Further Results on Information Theory



• What is information?

• How do we measure information?

Let us look at the following sentences:

1)  I will be one year older next year.

No information

2)  I was born in 1993.

Some information

3)  I was born in 1990s.

More information

Boring!

Being frank!

Interesting, so which year?  

The number of possibilities should be linked to the information!

§1.1  An Introduction of Information 



Throw a die once

Throw three dies

Information should be ‘additive’.

You have 6 possible outcomes.

{1, 2, 3, 4, 5, 6}

Let us do the following game:

§1.1  An Introduction of Information 



We can use ‘logarithm’ to scale down the a huge amount of 

possibilities.

Number (binary bit) permutations are used to represent all 

possibilities.

Let us look at the following problem.

§1.1  An Introduction of Information 



Finally, let us look into the following game.

§1.1  An Introduction of Information 

s



Measure of information should consider the probabilities of various 

possible events.

§1.1  An Introduction of Information 



 Observations: … …

§1.2  Entropy



§1.2  Entropy

Observations:



§1.2  Entropy

outputs

Total amount of information = 14 bits. Is it right?



§1.2 Entropy



Example 1.2:

§1.2 Entropy



Binary Entropy Function

§1.2 Entropy

𝐻 = 𝑃(0) ∙ log2𝑃(0)
−1 + 𝑃 1 log2𝑃(1)

−1

or



§1.2 Entropy



§1.2 Entropy

 Entropy for two random variables X and Y.

 Realizations of X and Y are x and y.

 Distributions of X and Y are P(x) and P(y).

Joint Entropy H(X, Y): Given a joint distribution P(x, y),

𝐻 𝑋, 𝑌 = − 

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃(𝑥, 𝑦)

Condition Entropy 𝐻 𝑌 𝑋 :

𝐻 𝑌 𝑋 =  

𝑥∈𝑋

𝑃 𝑥 𝐻(𝑌|𝑋 = 𝑥)

= − 

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥 𝑃(𝑦|𝑥)log2𝑃(𝑦|𝑥)

= − 

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃(𝑦|𝑥)



§1.2 Entropy

The Chain Rule (Relationship between Joint Entropy and Conditional Entropy)

𝐻 𝑋, 𝑌 = − 

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃(𝑥, 𝑦)

= − 

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2(𝑃 𝑦 𝑥 𝑃 𝑥 )

= − 

𝑥∈𝑋

𝑃(𝑥) log2𝑃 𝑥 −  

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃 𝑦|𝑥

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌|𝑋)

= 𝐻 𝑌 + 𝐻(𝑋|𝑌)

= − 

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃 𝑥 − 

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃 𝑦|𝑥

= 𝐻 𝑋 + 𝐻(𝑌|𝑋)

Proof:



§1.3 Mutual Information

 Two random variables X and Y.

 Realizations of X and Y are x and y.

 Distributions of X and Y are P(x) and P(y).

 Joint distribution of X and Y is P(x, y).

 Conditional distribution of X is 𝑃(𝑥|𝑦).

Mutual Information between X and Y: 

𝐼 𝑋, 𝑌 =  

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2
𝑃(𝑥|𝑦)

𝑃(𝑥)



§1.3 Mutual Information

Mutual Information’s Relationship with Entropy: 

𝐼 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

𝐼 𝑋, 𝑌 =  

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2
𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

Proof:

=  

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃 𝑥, 𝑦 −  

𝑥∈𝑋

𝑃 𝑥 log2𝑃 𝑥 −  

𝑦∈𝑌

𝑃 𝑦 log2𝑃 𝑦

= 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

Remark: The above proof also shows the symmetry of mutual information as 

𝐼 𝑋, 𝑌 = 𝐼 𝑌, 𝑋



§1.3 Mutual Information

Mutual Information’s Relationship with Entropy: 

𝐼 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

This relationship can be visualized in the Venn diagram



§1.3 Mutual Information

Corollary: 

𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

This can also be concluded using the Chain Rule.

= 𝐻 𝑌 − 𝐻(𝑌|𝑋)

Bounds on 𝐼 𝑋, 𝑌

0 ≤ 𝐼(𝑋, 𝑌) ≤ min{𝐻 𝑋 ,𝐻(𝑌)}



Mutual Information of A Channel

Source Channel Sink

§1.3 Mutual Information

- Consider X is the transmitted signal, Y is the received signal.

- Y is a variant of X where the discrepancy is introduced by channel.

How much we don’t know BEFORE 

the channel observations.

How much we still don’t know 

AFTER the channel observations.

𝐻 𝑋 − 𝐻(𝑋|𝑌)

−

How much information is carried by the channel, and this is called the 

Mutual Information of the channel, denoted as 𝐼(𝑋, 𝑌).

Remark: Mutual information I(X, Y) describes the amount of information one variable 

X contains about the other Y, or vice versa as in I(Y, X).



Example 1.3: Given the binary symmetric channel shown as

0.8

0.8

0.2

0.2

0 0

1 1

Please determine the mutual information of such a channel.

Solution:

˗ Entropy of the binary source is

§1.3 Mutual Information



§1.3 Mutual Information



• Hence, the conditional entropy is:

• The mutual information is:
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§1.3 Mutual Information
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§1.4 Further Results on Information Theory

Relative Entropy: Assume X and  𝑋 are two random variables with realizations of x and  𝑥, 

respectively. They aim to describe the same event, with probability mass functions of 𝑃 𝑥
and 𝑃( 𝑥), respectively. Their relative entropy is  

𝐷 𝑃 𝑥 , 𝑃  𝑥 =  

𝑥∈supp 𝑃(𝑥)

𝑃 𝑥 log2
𝑃(𝑥)

𝑃( 𝑥)

= 𝔼 log2
𝑃 𝑥

𝑃  𝑥

- It is often called the Kullback-Leibler distance between two distributions 𝑃 𝑥 and

𝑃  𝑥 .

- It is a measure of inefficiency by assuming a distribution 𝑃  𝑥 when the true

distribution is 𝑃 𝑥 . E.g., an event can be described by an average length of 𝐻(𝑃 𝑥 )
bits. However, if we assume its distribution is 𝑃  𝑥 , we will need an average length

of 𝐻 𝑃 𝑥 + 𝐷 𝑃 𝑥 , 𝑃  𝑥 bits to describe it.

- It is not symmetric as 𝐷 𝑃 𝑥 , 𝑃  𝑥 ≠ 𝐷 𝑃  𝑥 , 𝑃 𝑥 .



§1.4 Further Results on Information Theory

- Corollary 1: When 𝑃 𝑥 = 𝑃( 𝑥), 𝐷 𝑃 𝑥 , 𝑃  𝑥 = 0.

- Corollary 2: 𝐷 𝑃 𝑥 , 𝑃  𝑥 ≥ 0.

−𝐷 𝑃 𝑥 , 𝑃  𝑥 =  

𝑥∈supp 𝑃 𝑥

𝑃 𝑥 log2
𝑃  𝑥

𝑃 𝑥

≤  

𝑥∈supp 𝑃 𝑥

𝑃 𝑥
𝑃  𝑥

𝑃 𝑥
− 1 log2 𝑒

Proof:

≤  

𝑥∈supp 𝑃 𝑥

𝑃  𝑥 −  

𝑥∈supp 𝑃 𝑥

𝑃 𝑥 log2 𝑒

≤ (1 − 1)log2 𝑒

= 0



§1.4 Further Results on Information Theory

Example 1.4: The true distribution 𝑃 𝑥 is given. If we assume a distribution of 𝑃  𝑥𝑖 =
1

𝑘

for 𝑖 = 1,2, … , 𝑘 to describe the same event, then

𝐷 𝑃 𝑥 , 𝑃  𝑥 = 𝔼 log2
𝑃 𝑥

𝑃  𝑥
= 𝔼[log2𝑘𝑃(𝑥)]

= 𝔼 log2𝑘 + 𝔼[log2𝑃(𝑥)]

= 𝐻 𝑃  𝑥 − 𝐻(𝑃 𝑥 )

= log2𝑘 − 𝐻(𝑃 𝑥 )



§1.4 Further Results on Information Theory

Convex Function: A function 𝑓 𝑥 is convex over the interval (a, b) if ∀𝑥1, 𝑥2 ∈ (𝑎, 𝑏) and 

0 ≤ 𝜆 ≤ 1,

𝑓 𝜆𝑥1 + 1 − 𝜆 𝑥2 ≤ 𝜆𝑓 𝑥1 + 1 − 𝜆 𝑓(𝑥2).

It is strictly convex if the equality holds when 𝜆 = 0 or 𝜆 = 1.

- If 𝑓 𝑥 is convex, −𝑓 𝑥 is concave.

- Example 1.5: log2
1

𝑥
is strictly convex over (0,∞).

Let 𝑥1 = 2, 𝑥2 = 5 and 𝜆 = 0.5,

log2
1

0.5 × 2 + 0.5 × 5
= −1.81

0.5 × log2
1

2
+ 0.5 × log2

1

5
= −1.66

When 𝜆 = 0 or 𝜆 = 1, the equality holds.

Note that log2𝑥 is concave.



§1.4 Further Results on Information Theory

Jensen’s Inequality: If function 𝑓 𝑥 is convex, then

𝑓 𝔼[𝑥] ≤ 𝔼[𝑓(𝑥)].

With two mass points 𝑥1 and 𝑥2 and distributions of 𝑝1 and 𝑝2, the convexity implies  Proof:

𝑓 𝑝1𝑥1 + 𝑝2𝑥2 ≤ 𝑝1𝑓 𝑥1 + 𝑝2𝑓(𝑥2).

Assume this is also true for 𝑘 − 1 mass points that

𝑓 𝑝1𝑥1 +⋯+ 𝑝𝑘−1𝑥𝑘−1 ≤ 𝑝1𝑓 𝑥1 +⋯+ 𝑝𝑘−1𝑓(𝑥𝑘−1).

Therefore, for k mass points, we have

 

𝑖=1

𝑘

𝑝𝑖𝑓(𝑥𝑖) ≥ 𝑝𝑘𝑓 𝑥𝑘 + 𝑓 𝑝1𝑥1 +⋯+ 𝑝𝑘−1𝑥𝑘−1 .



§1.4 Further Results on Information Theory

Let 𝑝𝑖
′ =

𝑝𝑖

1−𝑝𝑘
, for 𝑖 = 1,2, … , 𝑘 − 1.

 

𝑖=1

𝑘

𝑝𝑖𝑓(𝑥𝑖) ≥ 𝑝𝑘𝑓 𝑥𝑘 + 1 − 𝑝𝑘 𝑓  

𝑖=1

𝑘−1

𝑝𝑖′𝑥𝑖

≥ 𝑓 𝑝𝑘𝑥𝑘 +  

𝑖=1

𝑘−1

(1 − 𝑝𝑘)𝑝𝑖′𝑥𝑖

= 𝑓 𝑝𝑘𝑥𝑘 +  

𝑖=1

𝑘−1

𝑝𝑖𝑥𝑖

= 𝑓  

𝑖=1

𝑘

𝑝𝑖𝑥𝑖



§1.4 Further Results on Information Theory

- Jensen’s inequality can be applied to prove some properties on entropy.

- Consequence 1: 𝐷 𝑃 𝑥 , 𝑃  𝑥 ≥ 0

- Consequence 2: 𝐼(𝑋, 𝑌) ≥ 0

Proof:
−𝐷 𝑃 𝑥 , 𝑃  𝑥 =  

𝑥∈supp 𝑃 𝑥

𝑃 𝑥 log2
𝑃  𝑥

𝑃 𝑥

≤ log2  

𝑥∈supp 𝑃 𝑥

𝑃  𝑥

≤ log21 = 0

Proof:
𝐼 𝑋, 𝑌 =  

𝑥∈𝑋

 

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2
𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

= 𝐷(𝑃 𝑥, 𝑦 , 𝑃 𝑥 𝑃(𝑦)) ≥ 0

𝐼 𝑋, 𝑌 = 0 only if 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃(𝑦), i.e., X and Y are independent.



§1.4 Further Results on Information Theory

Fano’s Inequality: Let X and Y are two random variables with realizations in {𝑥1, 𝑥2, … 𝑥𝑘}. 

Let 𝑃𝑒 = Pr 𝑋 ≠ 𝑌 , then

Proof: Let us create a binary variable Z such that

𝐻 𝑋 𝑌 ≤ 𝐻 𝑃𝑒 + 𝑃𝑒log2 𝑘 − 1 .

Hence, 𝐻 𝑍 = 𝐻(𝑃𝑒).

𝑍 = 0, if 𝑋 = 𝑌.

𝐻 𝑋𝑍 𝑌 = 𝐻 𝑋 𝑌 + 𝐻 𝑍 𝑋𝑌 = 𝐻(𝑋|𝑌)

Note, with the knowledge of X and Y, Z is deterministic.

𝑍 = 1, if 𝑋 ≠ 𝑌.



§1.4 Further Results on Information Theory

Note,

𝐻 𝑋𝑍 𝑌 = 𝐻 𝑍 𝑌 + 𝐻(𝑋|𝑌𝑍)

- 𝐻 𝑋 𝑌 implies with the knowledge of Y, how much uncertainty is left about X (X

and Y are related);

- 𝐻 𝑃𝑒 : numbers of bits to describe X whenever X = Y;

- log2(𝑘 − 1): number of bits to describe X whenever 𝑋 ≠ 𝑌.

𝐻 𝑋 𝑌, 𝑍 = 0 = 0,

𝐻 𝑋 𝑌, 𝑍 = 1 = log2(𝑘 − 1),

≤ 𝐻 𝑍 + 𝐻(𝑋|𝑌𝑍)

𝐻 𝑋 𝑌 ≤ 𝐻 𝑍 + 𝑃𝑒log2(𝑘 − 1).



§1.4 Further Results on Information Theory

Data Processing Inequality: Given a concatenated data processing system as

We have

𝐼 𝑋, 𝑍 ≤  
𝐼(𝑋, 𝑌)
𝐼(𝑌, 𝑍)

.

Processor 1 Processor 2
X Y Z



§1.4 Further Results on Information Theory

Proof:

Remark: Information cannot be increased by data processing.

𝐼 𝑋, 𝑍 = 𝐻 𝑋 − 𝐻 𝑋 𝑍

= 𝐻 𝑋 − 𝐻(𝑋|𝑌)

= 𝐼(𝑋, 𝑌)

𝐼 𝑋, 𝑍 = 𝐻 𝑍 − 𝐻 𝑍 𝑋

= 𝐻 𝑍 − 𝐻(𝑍|𝑌)

= 𝐼(𝑌, 𝑍)

≤ 𝐻 𝑋 − 𝐻(𝑋|𝑍𝑌)

≤ 𝐻 𝑍 − 𝐻(𝑍|𝑋𝑌)
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