

Chapter 6 Reed-Solomon Codes

- 6.1 Finite Field Algebra
- 6.2 Reed-Solomon Codes
- 6.3 Syndrome Based Decoding
- 6.4 Curve-Fitting Based Decoding

- Nonbinary codes: message and codeword symbols are represented in a finite field of size q, and q>2.
- Advantage of presenting a code in a nonbinary image.

A binary codeword sequence in $\{0,1\}$ $b_0 \ b_1 \ b_2 \ b_3 \ b_4 \ b_5 \ b_6 \ b_7 \ b_8 \ b_9 \ b_{10} \ b_{11} \ b_{12} \ b_{13} \ b_{14} \ b_{15} \ b_{16} \ b_{17}$

 b_{18} b_{19} b_{20}

A nonbinary codeword sequence in {0, 1, 2, 3, 4, 5, 6, 7}

 $\boxed{c_0} \boxed{c_1} \ c_2 \ c_3 \ c_4 \ \boxed{c_5} \ c_6$

: where the channel error occurs

8 bit errors are treated as 3 symbol errors in a nonbinary image

- Finite field (Galois field) \mathbf{F}_q : a set of q elements that perform "+" "-" "×" "/" without leaving the set.
- Let p denote a prime, e.g., 2, 3, 5, 7, 11, \cdots , it is required q = p or $q = p^{\theta}(\theta)$ is a positive integer greater than 1). If $q = p^{\theta}$, \mathbf{F}_q is an extension field of \mathbf{F}_p .
- **Example 6.1:** "+" and " \times " in \mathbf{F}_a .

$$\mathbf{F}_2 = \{ 0, 1 \}$$

+	0	1
0	0	1
1	1	0

×	0	1
0	0	0
1	0	1

all in modulo-2

$$\mathbf{F}_5 = \{ 0, 1, 2, 3, 4 \}$$

+	0	1	2	3	4	_
0	0	1 1 2 3 4 0	2	3	4	•
1	1	2	3	4	0	
2	2	3	4	0	1	
3	3	4	0	1	2	
4	4	0	1	2	3	

×	0	1	2	3	4
0	0	1 0 1 2 3 4	0	0	
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

all in modulo-5

- " - " and " / " can be performed as " + " and " \times " with additive inverse and multiplicative inverse, respectively.

Additive inverse of a a': a' + a = 0 and a' = -aMultiplicative inverse of a a': $a' \cdot a = 1$ and a' = 1/a

- " - " operation:

Let $h, a \in \mathbf{F}_q$. h - a = h + (-a) = h + a'. E.g., in \mathbf{F}_5 , 1 - 3 = 1 + (-3) = 1 + 2 = 3;

-"/" operation:

Let $h, a \in \mathbb{F}_q$. $h/a = h \times a'$. E.g., in \mathbb{F}_5 , $2/3 = 2 \times (1/3) = 2 \times 2 = 4$.

- Nonzero elements of \mathbf{F}_q can be represented using a primitive element σ such that $\mathbf{F}_q = \{0, 1, \sigma, \sigma^2, \dots, \sigma^{q-2}\}.$
- Primitive element σ of \mathbf{F}_q : $\sigma \in \mathbf{F}_q$ and unity can be produced by at least

$$\underbrace{\sigma \bullet \sigma \bullet \cdots \bullet \sigma}_{q-1} = 1, \text{ or } \sigma^{q-1} = 1.$$
 all in modulo-q

E.g., in \mathbf{F}_5 , $2^4 = 1$ and $3^4 = 1$. Here, 2 and 3 are the primitive elements of \mathbf{F}_5 .

- Example 6.2: In \mathbf{F}_5 ,

If 2 is chosen as the primitive element, then

$$\mathbf{F}_5 = \{ 0, 1, 2, 3, 4 \} = \{ 0, 2^4, 2^1, 2^3, 2^2 \} = \{ 0, 1, 2^1, 2^3, 2^2 \}$$

If 3 is chosen as the primitive element, then

$$\mathbf{F}_5 = \{ 0, 1, 2, 3, 4 \} = \{0, 3^4, 3^3, 3^1, 3^2 \} = \{0, 1, 3^3, 3^1, 3^2 \}$$

- If \mathbf{F}_q is an extension field of \mathbf{F}_p such as $q = p^{\theta}$, elements of \mathbf{F}_q can also be represented by θ -dimensional vectors in \mathbf{F}_p .
- Primitive polynomial p(x) of \mathbf{F}_q ($q = p^{\theta}$): an irreducible polynomial of degree θ that divides $x^{p^{\theta}-1}-1$ but not other polynomials $x^{\Phi}-1$ with $\Phi < p^{\theta}-1$. E.g., in \mathbf{F}_8 , the primitive polynomial $p(x) = x^3 + x + 1$ divides x^7-1 , but not x^6-1 , x^5-1 , x^4-1 , x^3-1 .
- If a primitive element σ is a root of p(x) such that $p(\sigma) = 0$, elements of \mathbf{F}_q can be represented in the form of

$$w_{\theta - 1}\sigma^{\theta - 1} + w_{\theta - 2}\sigma^{\theta - 2} + \dots + w_{1}\sigma^{1} + w_{0}\sigma^{0}$$
 where $w_{0}, w_{1}, \dots, w_{\theta - 2}, w_{\theta - 1} \in \mathbf{F}_{p}$, or alteratively in
$$(w_{\theta - 1}, w_{\theta - 2}, \cdots, w_{1}, w_{0})$$

Example 6.3: If $p(x) = x^3 + x + 1$ is the primitive polynomial of \mathbf{F}_8 , and its primitive element σ satisfies $\sigma^3 + \sigma + 1 = 0$, then

\mathbf{F}_8	$w_2\sigma^2 + w_1\sigma^1 + w_0\sigma^0$	$w_2 \ w_1 \ w_0$
0	0	0 0 0
1	1	0 0 1
σ	σ	0 1 0
σ^2	σ^2	1 0 0
σ^3	$\sigma + 1$	0 1 1
σ^4	$\sigma^2 + \sigma$	1 1 0
σ^5	$\sigma^2 + \sigma + 1$	1 1 1
σ^6	$\sigma^2 + 1$	1 0 1

- Representing $\mathbf{F}_q = \{0, 1, \sigma, \dots, \sigma^{q-2}\}, "\times ""/"" + "" - " operations become$

"
$$\times$$
 ": $\sigma^{i} \times \sigma^{j} = \sigma^{(i+j)\% (q-1)}$
E.g., in \mathbf{F}_{8} , $\sigma^{4} \times \sigma^{5} = \sigma^{(4+5)\% 7} = \sigma^{2}$

".'
$$\sigma^i / \sigma^j = \sigma^{(i-j)\% (q-1)}$$

E.g., in \mathbf{F}_8 , $\sigma^4 / \sigma^5 = \sigma^{(4-5)\% 7} = \sigma^6$

"+": if
$$\sigma^{i} = w_{\theta-1}\sigma^{\theta-1} + w_{\theta-2}\sigma^{\theta-2} + \cdots + w_{0}\sigma^{0}$$

(&"-") $\sigma^{j} = w'_{\theta-1}\sigma^{\theta-1} + w'_{\theta-2}\sigma^{\theta-2} + \cdots + w'_{0}\sigma^{0}$
 $\sigma^{i} + \sigma^{j} = (w_{\theta-1} + w'_{\theta-1})\sigma^{\theta-1} + (w_{\theta-2} + w'_{\theta-2})\sigma^{\theta-2} + \cdots + (w_{0} + w'_{0})\sigma^{0}$

E.g., in \mathbf{F}_{8} , $\sigma^{4} + \sigma^{5} = \sigma^{2} + \sigma + \sigma^{2} + \sigma + 1 = 1$

- An RS code^[1] defined over \mathbf{F}_q is characterized by its codeword length n = q 1, dimension k < n and the minimum Hamming distance d. It is often denoted as an (n, k) (or (n, k, d)) RS code.
- It is a maximum distance separable (MDS) code such that

$$d = n - k + 1$$

- It is a linear block code and also cyclic.
- The widely used RS codes include the (255, 239) and the (255, 223) codes both of which are defined in \mathbf{F}_{256} .

[1] I. Reed and G. Solomon, "Polynomial codes over certain finite fields," J. Soc. Indust. Appl. Math, vol. 8, pp. 300-304, 1960.

Notations

 $\mathbf{F}_q[x]$, a univariate polynomial ring over \mathbf{F}_q , i.e., $f(x) = \sum_{i \in \mathbb{N}} f_i x^i$ and $f_i \in \mathbf{F}_q$.

 $\mathbf{F}_q[x, y]$, a bivariate polynomial ring over \mathbf{F}_q , i.e., $f(x, y) = \sum_{i,j \in \mathbb{N}} f_{ij} x^i y^j$ and $f_{ij} \in \mathbf{F}_q$.

 \mathbf{F}_q^{\bullet} , \bullet - dimensional vector over \mathbf{F}_q .

- Encoding of an (n, k) RS code.

Message vector $\overline{u} = (u_0, u_1, u_2, \dots, u_{k-1}) \in \mathbf{F}_q^k$

Message polynomial

$$u(x) = u_0 + u_1 x + u_2 x^2 + \dots + u_{k-1} x^{k-1} \in \mathbf{F}_q[x]$$

Codeword

$$\bar{c} = (u(\alpha_0), u(\alpha_1), u(\alpha_2), \cdots, u(\alpha_{n-1})) \in \mathbf{F}_q^n$$

 $\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_{n-1} \in \mathbf{F}_q \setminus \{0\}$. They are often called code locators.

- Encoding of an (n, k) RS code in a linear block code fashion

$$\overline{c} = \overline{u} \cdot \mathbf{G}$$

$$= (u_0, u_1, \cdots, u_{k-1}) \begin{bmatrix} (\alpha_0)^0 & (\alpha_1)^0 & \cdots & (\alpha_{n-1})^0 \\ (\alpha_0)^1 & (\alpha_1)^1 & \cdots & (\alpha_{n-1})^1 \\ \vdots & \vdots & \ddots & \vdots \\ (\alpha_0)^{k-1} & (\alpha_1)^{k-1} & \cdots & (\alpha_{n-1})^{k-1} \end{bmatrix}$$

- **Example 6.4:** For a (7, 3) RS code that is defined in \mathbf{F}_8 , if the message is $\overline{u} = (u_0, u_1, u_2) = (\sigma^4, 1, \sigma^5)$, the message polynomial will be $u(x) = \sigma^4 + x + \sigma^5 x^2$. Let $\{\alpha_0, \alpha_1, \dots, \alpha_6\} = \{1, \sigma, \dots, \sigma^6\}$, the codeword can be generated by
- $\overline{c} = (u(1), u(\sigma), u(\sigma^2), u(\sigma^3), u(\sigma^4), u(\sigma^5), u(\sigma^6)) = (0, \sigma^6, \sigma^4, \sigma^3, \sigma^6, \sigma^3, 0)$

•
$$\overline{c} = \overline{u} \cdot \mathbf{G} = (\sigma^4, 1, \sigma^5) \cdot \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \sigma^1 & \sigma^2 & \sigma^3 & \sigma^4 & \sigma^5 & \sigma^6 \\ 1 & \sigma^2 & \sigma^4 & \sigma^6 & \sigma^1 & \sigma^3 & \sigma^5 \end{bmatrix} = (0, \sigma^6, \sigma^4, \sigma^3, \sigma^6, \sigma^3, 0)$$

- MDS property of RS codes d = n k + 1
 - Singleton bound for an (n, k) linear block code, $d \le n k + 1$
 - -u(x) has at most k 1 roots. Hence, \overline{c} has at most k 1 zeros and $d_{\text{Ham}} = (\overline{c}, \overline{0}) \ge n k + 1$
- Parity-check matrix of an (n, k) RS code

$$\mathbf{H} = \begin{bmatrix} (\alpha_0)^1 & (\alpha_1)^1 & \cdots & (\alpha_{n-1})^1 \\ (\alpha_0)^2 & (\alpha_1)^2 & \cdots & (\alpha_{n-1})^2 \\ \vdots & \vdots & \ddots & \vdots \\ (\alpha_0)^{n-k} & (\alpha_1)^{n-k} & \cdots & (\alpha_{n-1})^{n-k} \end{bmatrix}$$

$$\overline{c} \cdot \mathbf{H}^T = \overline{u} \cdot \mathbf{G} \cdot \mathbf{H}^T = \overline{0} \leftarrow \text{an } n - k \text{ all zero vector}$$

- Insight of $\mathbf{G} \cdot \mathbf{H}^T$

$$\begin{bmatrix} (\alpha_0)^0 & (\alpha_1)^0 & \cdots & (\alpha_{n-1})^0 \\ (\alpha_0)^1 & (\alpha_1)^1 & \cdots & (\alpha_{n-1})^1 \\ \vdots & \vdots & \ddots & \vdots \\ (\alpha_0)^{k-1} & (\alpha_1)^{k-1} & \cdots & (\alpha_{n-1})^{k-1} \end{bmatrix} \cdot \begin{bmatrix} (\alpha_0)^1 & (\alpha_0)^2 & \cdots & (\alpha_0)^{n-k} \\ (\alpha_1)^1 & (\alpha_1)^2 & \cdots & (\alpha_1)^{n-k} \\ \vdots & \vdots & \ddots & \vdots \\ (\alpha_{n-1})^1 & (\alpha_{n-1})^2 & \cdots & (\alpha_{n-1})^{n-k} \end{bmatrix}$$

- Let $i = 0, 1, \dots, k - 1, j = 0, 1, \dots, n - 1, v = 0, 1, \dots, n - k - 1.$

Entries of **G** can be denoted as $[\mathbf{G}]_{i,j} = (\alpha_j)^i$

Entries of \mathbf{H}^T can be denoted as $[\mathbf{H}^T]_{j,\nu} = (\alpha_j)^{\nu+1}$

Entries of $\mathbf{G} \cdot \mathbf{H}^T$ is

$$[\mathbf{G} \cdot \mathbf{H}^T]_{i,v} = \sum_{j=0}^{n-1} (\alpha_j)^i \cdot (\alpha_j)^{v+1} = \sum_{j=0}^{n-1} (\alpha_j)^{i+v+1} = \left(\sum_{j=0}^{n-1} \alpha_j\right)^{i+v+1} = 0$$

- Let $\{\alpha_0, \alpha_1, \cdots, \alpha_{n-1}\} = \{\sigma^0, \sigma^1, \cdots, \sigma^{n-1}\}$, \mathbf{H}^T can be perceived as

$$egin{bmatrix} (\sigma^1)^0 & (\sigma^2)^0 & \cdots & (\sigma^{n-k})^0 \ (\sigma^1)^1 & (\sigma^2)^1 & \cdots & (\sigma^{n-k})^1 \ dots & dots & \ddots & dots \ (\sigma^1)^{n-1} & (\sigma^2)^{n-1} & \cdots & (\sigma^{n-k})^{n-1} \end{bmatrix}$$

- Perceiving codeword $\overline{c} = (c_0, c_1, \dots, c_{n-1})$ as in $c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$
- $\overline{c} \cdot \mathbf{H}^{T} = \overline{0} \text{ implies}$ $c(\sigma^{1}) = c(\sigma^{2}) = \dots = c(\sigma^{n-k}) = 0$ $\sigma^{1}, \sigma^{2}, \dots, \sigma^{n-k} \text{ are roots of RS codeword polynomial } c(x).$

- An alternatively encoding
 - Message polynomial $u(x) = u_0 + u_1 x + \cdots + u_{k-1} x^{k-1}$
 - Codeword polynomial $c(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$
 - $-c(x) = u(x) \cdot g(x)$ and deg(g(x)) = n k
 - Since $\sigma^1, \sigma^2, \dots, \sigma^{n-k}$ are roots of c(x) $g(x) = (x \sigma^1)(x \sigma^2) \cdots (x \sigma^{n-k})$ The generator polynomial of an (n, k) RS code
 - Systematic encoding $c(x) = x^{n-k}u(x) + (x^{n-k}u(x)) \bmod g(x)$
- **Example 6.5:** For a (7, 3) RS code, its generator polynomial is

$$g(x) = (x - \sigma^{1})(x - \sigma^{2})(x - \sigma^{3})(x - \sigma^{4}) = x^{4} + \sigma^{3}x^{3} + x^{2} + \sigma x + \sigma^{3}$$

Given message vector $\overline{u} = (u_0, u_1, u_2) = (\sigma^4, 1, \sigma^5)$, the codeword can be generated by $c(x) = u(x) \cdot g(x) = 1 + \sigma^2 x + \sigma^4 x^2 + \sigma^6 x^3 + \sigma x^4 + \sigma^3 x^5 + \sigma^5 x^6$.

For systematic encoding, $(x^{n-k}u(x)) \mod g(x) = (x^4 \cdot u(x)) \mod g(x) = x^3 + \sigma^4 x + \sigma^5$, and the codeword is $\overline{c} = (\sigma^5, \sigma^4, 0, 1, \sigma^4, 1, \sigma^5)$

- The channel: r(x) = c(x) + e(x)

$$c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$$
 – codeword polynomial

$$e(x) = e_0 + e_1 x + \dots + e_{n-1} x^{n-1}$$
 - error polynomial

$$r(x) = r_0 + r_1 x + \dots + r_{n-1} x^{n-1}$$
 - received word polynomial

- Let n k = 2t, $\sigma^1, \sigma^2, \dots, \sigma^{2t}$ are roots of c(x)
- 2t syndromes can be determined as

$$S_1 = r(\sigma^1), S_2 = r(\sigma^2), \dots, S_{2t} = r(\sigma^{2t})$$

If $S_1 = S_2 = \cdots = S_{2t} = 0$, r(x) is a valid codeword. Otherwise, $e(x) \neq 0$, error-correction is needed.

- If $e(x) \neq 0$, we assume there are ω errors with $e_{j_1} \neq 0$, $e_{j_2} \neq 0$, \cdots , $e_{j_{\omega}} \neq 0$. $e(x) = e_{j_1}x^{j_1} + e_{j_2}x^{j_2} + \cdots + e_{j_{\omega}}x^{j_{\omega}}$.
- Let $v = 1, 2, \dots, 2t$

$$S_{v} = \sum_{j=0}^{n-1} c_{j} \sigma^{jv} + \sum_{j=0}^{n-1} e_{j} \sigma^{jv} = \sum_{j=0}^{n-1} e_{j} \sigma^{jv} = \sum_{\tau=1}^{\infty} e_{j_{\tau}} (\sigma^{j_{\tau}})^{v}$$

- For simplicity, let $X_{\tau} = \sigma^{j_{\tau}}$, we can list the 2t syndromes by

$$S_{1} = e_{j_{1}} X_{1}^{1} + e_{j_{2}} X_{2}^{1} + \dots + e_{j_{\omega}} X_{\omega}^{1}$$

$$S_{2} = e_{j_{1}} X_{1}^{2} + e_{j_{2}} X_{2}^{2} + \dots + e_{j_{\omega}} X_{\omega}^{2}$$

$$S_{2t} = e_{j_{1}} X_{1}^{2t} + e_{j_{2}} X_{2}^{2t} + \dots + e_{j_{\omega}} X_{\omega}^{2t}$$

- In the above non-linear equation group, $X_1, X_2, \cdots, X_{\omega}$ tell the error locations and $e_{j_1}, e_{j_2}, \cdots, e_{j_{\omega}}$ tell the error magnitudes. There are 2ω unknowns. It will be solvable if $2\omega \leq 2t$. The number of correctable errors is $\omega \leq \frac{n-k}{2}$.
- Since X_{j_τ} , e_{j_τ} ∈ $\mathbf{F}_q \setminus \{0\}$, an exhaustive search solution will have a complexity of $O(n^{2\omega})$.

- In order to decode an RS code with a polynomial-time complexity, the decoding is decomposed into determining the **error locations** and **error magnitudes**, i.e., $X_1, X_2, \dots, X_{\omega}$ and $e_{j_1}, e_{j_2}, \dots, e_{j_{\omega}}$, respectively.
- Error locator polynomial

$$\Lambda(x) = \prod_{\tau=1}^{\omega} (1 - X_{\tau} x)$$

$$= \Lambda_{\omega} x^{\omega} + \Lambda_{\omega-1} x^{\omega-1} + \dots + \Lambda_{1} x + \Lambda_{0}$$

$$(\Lambda_{0} = 1)$$

$$X_1^{-1} = \sigma^{-j_1}, X_2^{-1} = \sigma^{-j_2}, \cdots, X_{\omega}^{-1} = \sigma^{-j_{\omega}}$$
 are roots of the polynomial such that $\Lambda(X_1^{-1}) = \Lambda(X_2^{-1}) = \cdots = \Lambda(X_{\omega}^{-1}) = 0$.

– Determine $\Lambda(x)$ by finding out Λ_{ω} , $\Lambda_{\omega-1}$, ..., and Λ_1 , and its roots tell the error locations.

- How to determine
$$\Lambda_{\omega}$$
, $\Lambda_{\omega-1}$, ..., and Λ_{1} ?

Since $\Lambda(X_{\tau}^{-1}) = \Lambda_{\omega}X_{\tau}^{-\omega} + \Lambda_{\omega-1}X_{\tau}^{1-\omega} + \cdots + \Lambda_{1}X_{\tau}^{-1} + \Lambda_{0} = 0$

$$\sum_{\tau=1}^{\omega} e_{j_{\tau}}X_{\tau}^{\nu}\Lambda(X_{\tau}^{-1}) = 0, \text{ for } \nu = 1, 2, \cdots, 2t$$

$$= e_{j_{1}}\Lambda_{\omega}X_{1}^{\nu-\omega} + e_{j_{1}}\Lambda_{\omega-1}X_{1}^{\nu-\omega+1} + \cdots + e_{j_{1}}\Lambda_{1}X_{1}^{\nu-1} + e_{j_{1}}\Lambda_{0}X_{1}^{\nu}$$

$$+ e_{j_{2}}\Lambda_{\omega}X_{2}^{\nu-\omega} + e_{j_{2}}\Lambda_{\omega-1}X_{2}^{\nu-\omega+1} + \cdots + e_{j_{2}}\Lambda_{1}X_{2}^{\nu-1} + e_{j_{2}}\Lambda_{0}X_{2}^{\nu}$$

$$\vdots$$

$$+ e_{j_{\omega}}\Lambda_{\omega}X_{\omega}^{\nu-\omega} + e_{j_{\omega}}\Lambda_{\omega-1}X_{\omega}^{\nu-\omega+1} + \cdots + e_{j_{\omega}}\Lambda_{1}X_{\omega}^{\nu-1} + e_{j_{\omega}}\Lambda_{0}X_{\omega}^{\nu}$$

$$= \Lambda_{\omega}S_{\nu-\omega} + \Lambda_{\omega-1}S_{\nu-\omega+1} + \cdots + \Lambda_{1}S_{\nu-1} + \Lambda_{0}S_{\nu}$$

$$\Lambda_{\omega}S_{\nu-\omega} + \Lambda_{\omega-1}S_{\nu-\omega+1} + \cdots + \Lambda_{1}S_{\nu-1} + \Lambda_{0}S_{\nu} = 0$$

- Error locator polynomial can be determined using the syndromes.

$$v = \omega + 1: \qquad \Lambda_{\omega}S_1 + \Lambda_{\omega-1}S_2 + \dots + \Lambda_1S_{\omega} + \Lambda_0S_{\omega+1} = 0$$

$$v = \omega + 2: \qquad \Lambda_{\omega}S_2 + \Lambda_{\omega-1}S_3 + \dots + \Lambda_1S_{\omega+1} + \Lambda_0S_{\omega+2} = 0$$

$$\vdots$$

$$v = 2t: \qquad \Lambda_{\omega}S_{2t-\omega} + \Lambda_{\omega-1}S_{2t-\omega+1} + \dots + \Lambda_1S_{2t-1} + \Lambda_0S_{2t} = 0$$

$$\begin{bmatrix} S_1 & S_2 & \cdots & S_{\omega} \\ S_2 & S_3 & \cdots & S_{\omega+1} \\ \vdots & \vdots & \ddots & \vdots \\ S_{2t-\omega} & S_{2t-\omega+1} & \cdots & S_{2t-1} \end{bmatrix} \cdot \begin{bmatrix} \Lambda_{\omega} \\ \Lambda_{\omega-1} \\ \vdots \\ \Lambda_1 \end{bmatrix} = -\begin{bmatrix} S_{\omega+1} \\ S_{\omega+2} \\ \vdots \\ S_{2t} \end{bmatrix}$$

$$S_{v} = -\sum_{\tau=1}^{\omega} \Lambda_{\tau} S_{v-\tau}$$

Remark 2:

 S_0 is not one of the n - k syndromes.

- Solving the linear system in finding $\Lambda(x)$ has a complexity of $O(\omega^3)$. It can be facilitated by the Berlekamp-Massey algorithm^[2] whose complexity is $O(\omega^2)$.
- The Berlekamp-Massey algorithm can be implemented using the Linear Feedback Shift Register. Its pseudo program is the follows.

The Berlekamp-Massey Algorithm

```
Input: Syndromes S_1, S_2, ..., S_{2t};
Output: \Lambda(x);
Initialization: r = 0, \ell = 0, z = -1, \Lambda(x) = 1, T(x) = x:
      Determine \Delta = \sum_{i=0}^{\ell} \Lambda_i S_{r-i+1};
       If \Delta = 0
3:
             T(x) = xT(x):
             r = r + 1
4:
             If r < 2t
6:
                    Go to 1:
7:
             Else
8:
                    Terminate the algorithm;
9:
      Else
10:
              Update \Lambda^*(x) = \Lambda(x) - \Delta T(x);
11:
              If \ell \geq r - z
12:
                    \Lambda(x) = \Lambda^*(x);
13:
                    \ell^* = r - z; z = r - \ell; T(x) = \Lambda(x) / \Delta; \ell = \ell^*; \Lambda(x) = \Lambda^*(x);
14:
15:
             T(x) = xT(x):
             r=r+1:
16:
17:
             If r < 2t
18:
                    Go to 1;
19:
             Else
20:
                    Terminate the algorithm;
```


- Example 6.6: Given the (7, 3) RS codeword generated in Example 6.5, after the channel, the received word is

$$\overline{r} = (\sigma^5, \sigma^4, \overline{\sigma^3}, \sigma^0, \sigma^4, \overline{\sigma^2}, \sigma^5).$$

With the received word, we can calculate syndromes as

$$S_1 = r(\sigma) = \sigma^0, S_2 = r(\sigma^2) = \sigma^6, S_3 = r(\sigma^3) = \sigma^6, S_4 = r(\sigma^4) = \sigma^0.$$

Running the above Berlekamp-Massey algorithm, we obtain

r	ℓ	z	$\Lambda(x)$	T(x)	Δ
0	0	-1	1	X	$\sigma^{^{0}}$
1	1	0	1-x	X	σ^2
2	1	0	$1-\sigma^6x$	x^2	σ
3	2	1	$1-\sigma^6x-\sigma x^2$	$\sigma^6 x - \sigma^5 x^2$	$\sigma^{\scriptscriptstyle 5}$
4			$1-\sigma^3x-x^2$	$\sigma^6 x^2 - \sigma^5 x^3$	

Therefore, the error locator polynomial is $\Lambda(x) = 1 - \sigma^3 x - x^2$. In \mathbf{F}_8 , σ^5 and σ^2 are its roots. Therefore, r_2 and r_5 are corrupted.

– Determine the error magnitudes $e_{j_1}, e_{j_2}, \dots, e_{j_{\omega}}$, so that the erroneous symbols can be corrected by

$$c_{j_1} = r_{j_1} - e_{j_1}, c_{j_2} = r_{j_2} - e_{j_2}, \dots, c_{j_{\omega}} = r_{j_{\omega}} - e_{j_{\omega}}$$

The syndromes $S_v = \sum_{\tau=1}^{\infty} e_{j_{\tau}} X_{\tau}^v$, $v = 1, 2, \dots, 2t$. Knowing $X_1 = \sigma^{j_1}, X_2 = \sigma^{j_2}, \dots, X_{\omega} = \sigma^{j_{\omega}}$ from the error location polynomial $\Lambda(x)$, the above syndrome definition implies

$$\begin{bmatrix} X_{1}^{1} & X_{2}^{1} & \cdots & X_{\omega}^{1} \\ X_{1}^{2} & X_{2}^{2} & \cdots & X_{\omega}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1}^{2t} & X_{2}^{2t} & \cdots & X_{\omega}^{2t} \end{bmatrix} \begin{bmatrix} e_{j_{1}} \\ e_{j_{2}} \\ \vdots \\ e_{j_{\omega}} \end{bmatrix} = \begin{bmatrix} S_{1} \\ S_{2} \\ \vdots \\ S_{2t} \end{bmatrix}$$

- Error magnitudes can be determined from the above set of linear equations.

- The linear equation set can be efficiently solved using Forney's algorithm.
- Syndrome polynomial

$$S(x) = S_1 + S_2 x + \dots + S_{2t} x^{2t-1} = \sum_{v=1}^{2t} S_v x^{v-1}$$

- Error evaluation polynomial (The key equation)

$$\Omega(x) = S(x) \cdot \Lambda(x) \bmod x^{2t}$$

- Formal derivative of $\Lambda(x) = \Lambda_{\omega} x^{\omega} + \Lambda_{\omega-1} x^{\omega-1} + \cdots + \Lambda_1 x + \Lambda_0$ $\Lambda'(x) = \underline{\omega \Lambda_{\omega}} x^{\omega - 1} + \underline{(\omega - 1)\Lambda_{\omega - 1}} x^{\omega - 2} + \dots + \Lambda_{1}$ $\underbrace{\Lambda_{\omega} + \Lambda_{\omega} + \dots + \Lambda_{\omega}}_{\alpha} \qquad \underbrace{\Lambda_{\omega-1} + \Lambda_{\omega-1} + \dots + \Lambda_{\omega-1}}_{\alpha}$
- Error magnitude $e_{j_{\tau}}$ can be determined by $e_{j_{\tau}} = -\frac{\Omega(X_{\tau}^{-1})}{\Lambda'(X^{-1})}$.

$$e_{j_{\tau}} = -\frac{\Omega(X_{\tau}^{-1})}{\Lambda'(X_{\tau}^{-1})}$$

- Example 6.7: Continue from Example 6.6,

The syndrome polynomial is $S(x) = S_1 + S_2 x + S_3 x^2 + S_4 x^3 = \sigma^0 + \sigma^6 x + \sigma^6 x^2 + \sigma^0 x^3$.

The error locator polynomial is $\Lambda(x) = 1 - \sigma^3 x - x^2$.

The error evaluation polynomial is $\Omega(x) = S(x) \cdot \Lambda(x) \mod x^4 = \sigma^4 x + \sigma^0$.

Formal derivative of $\Lambda(x)$ is $\Lambda'(x) = \sigma^3$.

Error magnitudes are

$$e_2 = -\frac{\Omega(\sigma^{-2})}{\Lambda'(\sigma^{-2})} = \sigma^3$$

$$e_5 = -\frac{\Omega(\sigma^{-5})}{\Lambda'(\sigma^{-5})} = \sigma^6$$
.

As a result, $c_2 = r_2 - e_2 = 0$, $c_5 = r_5 - e_5 = \sigma^0$.

- BM decoding performances over AWGN channel with BPSK.

