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§ 6.1 Finite Field Algebra

— Nonbinary codes: message and codeword symbols are represented in a finite field of
size ¢, and g>2.

— Advantage of presenting a code in a nonbinary image.

A binary codeword sequence in {0,1}
b0 bl b2 b3 b4 b5 b6 b7 b8 b9 blO bll b12 blq b14 b15 b16 bl?

jo

b18 b19 b20

A nonbinary codeword sequence in {0, 1, 2, 3,4, 5, 6, 7}
Co||C1|C2 C3 C4 |C5|Cq

- where the channel error occurs

8 bit errors are treated as 3 symbol errors in a nonbinary image




§ 6.1 Finite Field Algebra

— Finite field (Galois field) F,:a set of g elements that perform  + ™ * -7 X =% [*
without leaving the set.

— Let p denote a prime, e.g., 2, 3,5, 7, 11, --- , itisrequiredq=porq=p?(fisa
positive integer greater than 1). If g = p’, F, is an extension field of F,.

— Example 6.1: “+”and “ X "in F,.

F,={0,1}
+ o 1 x [ o 1 all in
o]0 1 0 0 0 modulo-2
1 1 0 1 0 1

F-={0,1,2,3,4}

+ 0 1 2 3 4 X 0 1 2 3 4

0 0 1 2 3 4 0 0 0 0 0 0 all in

1 1 2 3 4 0 1 0 1 2 3 4 modulo-5
2 2 3 4 0 1 2 0 2 4 1 3

3 3 4 0 1 2 3 0 3 1 4 2

4 4 0 1 2 3 4 0 4 3 2 1




§ 6.1 Finite Field Algebra

—*-"and *“/” can be performed as “ + ” and “ X ” with additive inverse and
multiplicative inverse, respectively.
Additive inverse of a a:a+a=0and a'=-a
Multiplicative inverseofa a': a'ea=1and a'=1/a

— - operation:
Leth,aqu.
h-a=h+(-a)=h+a".
Eg,inF;,1-3=1+(-3)=1+2=3;

—“ /7 operation:
Leth,aEFq.
h/a=h X a".
E.g.,inF;,2/3=2X(1/3)=2X2=4



§ 6.1 Finite Field Algebra

— Nonzero elements of F, can be represented using a primitive element o such that
F~{0,1, 0, 0%, -+, 0%}

— Primitive element ¢ of F: 0 € F, and unity can be produced by at least
Gege--eg=1,0rctl=1, all in modulo-q
g-1

E.g., inF;, 24=1and 3*=1. Here, 2 and 3 are the primitive elements of F..

— Example 6.2: In F,
If 2 is chosen as the primitive element, then
Fe={0,1,2,3,4}={0,24 2%, 23 22}={0, 1, 2%, 23,22}
If 3 is chosen as the primitive element, then
Fe={0,1,23,4}={0,343%3,3}={0,1, 3% 3%, 32}



§ 6.1 Finite Field Algebra

— If F is an extension field of F, such as g = p?, elements of F, can also be represented
by 6-dimensional vectors in F,.

— Primitive polynomlal p(x) of F, (@ = p?): an irreducible polynomial of degree 6 that
divides x* ™ —1 but not other polynomlals X?-1 with @ <p?- 1.
E.g., in Fg, the primitive polynomial p(x) = x3+ x + 1 divides x’-1, but not x5-1, x>-1,
x4-1, x3-1.

— If a primitive element o is a root of p(x) such that p(s) = 0, elements of F, can be
represented in the form of
W09t + Wy 072 + ...+ wyot + wyo?
where Wo, Wy, ... ,\Wy,, W, € Fp, or alteratively in
(Wo.q, Woep, -+, Wy, Wo)



§ 6.1 Finite Field Algebra

— Example 6.3: If p(x) = x3+ x + 1 is the primitive polynomial of Fg, and its primitive
element ¢ satisfies 6*+ o + 1 = 0, then

Fg W02 + W0t + Wyo? W, W; W,
0 0 0 0O
1 1 0 0 1
o o 0 1 0
02 02 1 0 0
o o+1 0 11
o o’ +o 1 1 0
o c?+o+1 1 1 1
o® o>+ 1 1 0 1




§ 6.1 Finite Field Algebra

— Representing F,={0, 1,0, ---,0%2},* X 7%/ %+ %" gperations become

“ X Mg X gl=glit)%@-D)
E.g., inFg 0* X ¢®=c#*9%7= g2

“ [ Gl gl =g-D%@-1)
E.g. inFg, 0%/ 0°=ol*-5%7= g6

“+ 7 if ol = Wy 001+ Wy ,00 2 + - + WP
(&“-7)  I=Wpyo%t+ W07+ -+ Wipo”
o'+ ol = (W, + W, )o?t+ (W, + W) ,)0%2 + - + (Wy+ W()a?
E.g.,inFgo*+o°=0c’+0+0°+o+1=1



§ 6.2 Reed-Solomon Codes

— An RS codel!! defined over F, 1s characterized by its codeword lengthn=q - 1,
dimension k < n and the minimum Hamming distance d. It is often denoted as an
(n, k) (or (n, k, d) ) RS code.

— It Is a maximum distance separable (MDS) code such that
d=n-k+1

— It is a linear block code and also cyclic.

— The widely used RS codes include the (255, 239) and the (255, 223) codes both of
which are defined in Fz.

[1] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc. Indust. Appl. Math, vol. 8, pp. 300-304, 1960.



§ 6.2 Reed-Solomon Codes

— Notations _
F, [X], a univariate polynomial ring over F, i.e., f(X)=2_ fx and f, eF,.

ieN

F, [x, y], a bivariate polynomial ring over F i.e., F(xy)= i%finIyJ and fj €Fy.
Fq., « - dimensional vector over F.
— Encoding of an (n, k) RS code.
Message vector T = (U, U;,U,, -+, U, ;) € Fy
Message polynomial
u(x) =u, +ux+u,x’ +---+u,_x"e F [x]
Codeword
¢ = (ulap), u(ay), u(ay), -, u(an_,)) € F}

g, a1, &, -+, a1 € Fg\{0}. They are often called code locators.



§ 6.2 Reed-Solomon Codes

— Encoding of an (n,
c=u-G

- (uolu]_’ ...,

— Example 6.4: For a (7, 3) RS code that is defined inF,

Let {ap, ay, -

" a6} - {11 g,

Up—1)

[ (ao)o

(ap)l

(al)o
(0.1)1

(ag)t (@p)k?

k) RS code in a linear block code fashion

(an—l)o
(an—l)l

(an 1)k 1

, If the message Isu =
(ug, uy, uy) = (6%,1,0°), the message polynomial WI|| be u(x) = % + x + 0°x2.

+,0®}, the codeword can be generated by

= (u(D),u(o),u(c®),u(c*),u(c*),u(c>),u(c®)) = (0,c° a 0°,0°,0°%0)
1

[ J
O

U-G:(O'4,1,c75)-

(1 1

1 o

_1 o’

1 1
2 3
c° o
4 6
o' o

1
o

1
o)

o)

o)

5

3

1

o)

o)

6

5

:(0,06,0'4,0'3,06,03,0)



§ 6.2 Reed-Solomon Codes

— MDS property of RScodesd=n-k+ 1
— Singleton bound for an (n, k) linear block code,d<n-k+1
— u(x) has at most k - 1 roots. Hence, C has at most k - 1 zeros and
d,. =(C,0)>n-k+1

— Parity-check matrix of an (n, k) RS code

[ (“0)1 (“1)1 (an—l)l
H = (ap)z (a})z (“n—.1)2
(@)™ (@)™ ()]

C-H =0-G-H" =0 <« ann -k all zero vector



§ 6.2 Reed-Solomon Codes

L
— Insight of G-HT"

[ (“o)o

(ap)l

—Leti =0,1,---,

(al)o
(“})1

(@) (@)

(an—l)o
(an—l)l

(an 1

k—1,j=0,1,-,

)kl

Entries of G can be denoted as [ G ];; =

Entries of G-HT is

[G-H"];

[ (“o)l

(a'.1)1

n—1,v=0,1,--,
(“j)i

Entries of HT can be denoted as [ HT ]j,V = (aj)v+1

(“0)2
(a'.1)2

-(“1;—1)1 (a.n—1)2

Z(a» (o) = Z(a,>‘*”“=

()™
(“1).n_k

(tn_g)™")

n—k—1.



§ 6.2 Reed-Solomon Codes

— Let{ag, ay, -, ap_1} = {6 01,---,6™ 1}, HT can be perceived as

(O_l)O (02)0 (Gn—k)O
(01)1 (02)1 e (O_n—k )1
(Gl)n_l (GZ)n—l e (O_n—k)n—l

— Perceiving codeword T =(c,,C,,--,C, ;) asin
c(X)=c, +CX+---+C X"

— T-H" =0 implies
c(c)=c(c®)=---=c(c"*)=0
o' %, o are roots of RS codeword polynomial c(x).



§ 6.2 Reed-Solomon Codes

— An alternatively encoding
— Message polynomial u(x) = U, +UX +-+-+U,_X*
— Codeword polynomial ¢(X)=C, +CX+-+-+C, X"
— ¢(X) =u(x)-g(x) and deg(g(x)) =n -k
—Since ¢*,0?,---,0" are roots of c(x)
g(x) = (x—a)(x=c")---(x=c"")
T The generator polynomial of an (n, k) RS code

— Systematic encoding
c(X) = X" u(x) + (x"“u(x)) mod g(x)

1

— Example 6.5: For a (7, 3) RS code, its generator polynomial is

g(x)=(x—c)(x-c?)(x-c)(x-c*)=x*+ o’ + xX* + ox+°

Given message vector U = (ug,ul, u,) = (c*,1,5°), the codeword can be generated by
cx)=ux) -gix) =1+ 0%x+ 0*x? + 6%x3 + ox* + 03x> + o°x°.

For systematic encoding, (x”_"‘u(x))mod g(x) = (x4 -u(x))mod gx)=x'+o'x+0,

and the codeword is ¢ =(c°,06%,0,1,0%1,0°)



% 6.3 Syndrome Based Decoding

— The channel: r(x) =c(x)+e(x)
c(X)=c, +C,X+---+c X" —codeword polynomial

— error polynomial
— received word polynomial

e(x) =g, +ex+---+e X"
r(x)=r,+6x+--+r_x""

—Letn-k=2t o',0°,,0" are roots of ¢(x)

— 2t syndromes can be determined as
S, = r(c'), S, = I’(o‘z),---,SZt =r(c”)

If S,=S,=--=5, =0, r(x) is a valid codeword. Otherwise, €(x) # 0, error-correction

IS needed.



% 6.3 Syndrome Based Decoding

L
—If e(x) # 0, we assume there are w errors withe; #0,e; #0,---,¢; #0 .e(x) =
ej x’t +ej,x2 + -+ ¢ xlo.
—Letv=1,2, -2t

n-1 n-1 n-1 w
_ v v _ v _ Iy
SV—ZOCJU -I—ZOE‘J-G —Zoeja —Zlejr(a )
i= = = r=

— For simplicity, let X_=o, we can list the 2t syndromes by
S,=e X;+e X;+---+e X,
S,=e; X; +e X, +--+e X7

2t 2t 2t
S, :thl +ej2X2 +---+eijw
— In the above non-linear equation group, X4, X5, -+, X, tell the error locations and
€j.,€j,," € tell the error magnitudes. There are 2w unknowns. It will be solvable if

2w < 2t. The number of correctable errorsis » < ﬂ.

2

—Since X, .e; eF,\{0}, an exhaustive search solution will have a complexity of O(n*’).



% 6.3 Syndrome Based Decoding

— In order to decode an RS code with a polynomial-time complexity, the decoding is
decomposed into determining the error locations and error magnitudes, i.e.,
X, Xy X, and €,€; .-+, €; , respectively.

— Error locator polynomial
AX)=]](1-X.x)
=1

=A X" +A, X+ AXHA,

L (A=)
X, '=0" X =07, X, =07 are roots of the polynomial such that

AX) = AX;) == A(X,) =0.

— Determine A(x) by finding out A, A,,---, and Ay, and its roots tell the error
locations.



% 6.3 Syndrome Based Decoding

— How to determine A, A, -+, and A, ?
Since A(X.)=A X “+A, X+ +A X +A,=0
e XIAX M) =0,forv=1,2, .-, 2t
=1 ﬂ

V—w V—w+1 v-1 v
=€, A X " He A X T e A X e A K

V- V-o+1 v-1 v
+e;, A Ky T e A XK T e A X T4 AgX,

V- V-o+l v-1 v
+e, A X, U +e A X e AX T e AKX

=A,S, ,+A, ;S +4+AS,  +A,S,

V—o+1

AS,  +A, S +-+AS,  +A,S, =0

V—o+l

— Error locator polynomial can be determined using the syndromes.



% 6.3 Syndrome Based Decoding

]
—Listall A S, +A,_ .S, . ++AS,;+A,S, =0

V—o+1
v=1 AS, +A,S, =
v=2: A,S, +AS, +A,S, =--
v=3: AS, +A,S, +AS, +A,S, =
V=w A So+A, S ++AS, | +AS, = m
SV = _ZATSV—T
v=o +1: AS +A, S, +-+AS, +AS,., =0 =
V=w+2: A S +A, S, ++AS,  +AS, =0
: . Remark 2:
v=2t: AS,  +A, S, . +t+A SZt_l +A,S,, =0 | _ Sy Is not one of the
- ————————— n - k syndromes.
S, S, = S, A, 0+
SZ SS o Sa)+l Aw—l w+2

_SZt—a) SZt—a)+1 SZt—l_ Al SZt



% 6.3 Syndrome Based Decoding

— Solving the linear system in finding A(x) has a complexity of O(@’). It can be
facilitated by the Berlekamp-Massey algorithm[2 whose complexity is O(®®) .

— The Berlekamp-Massey algorithm can be implemented using the Linear Feedback
Shift Register. Its pseudo program is the follows.

The Berlekamp-Massey Algorithm

Input: Syndromes Sy, S,,--+, Sy ;
Output: A(X) ;
Initialization: r=0,(=0,2=-LA(X)=1T(x)=x;

1: Determine A= z::oAiSr—mJ

2 IfA=0

3 T(X)=XT(x) ;

4: r=r+l

5 If r<2t

6 Goto 1,

7 Else

8: Terminate the algorithm;
9: Else

10: Update A" (x) = A(x) — AT (X);
11: If />r—z

12: AX)=A"(x)5

13: Else

14: C=r—2; 2=r—0; TX=AM/A ; {=0"; A(X)=A"(x);
15: T(X)=xT(x) ;

16: r=r+l ;

17: If r<2t

18: Goto 1;

19: Else

20: Terminate the algorithm;

[2] J. L. Massey, “Shift register synthesis and BCH decoding,” IEEE Trans. Inf. Theory, vol. 15(1), pp. 122-127, 1969.



% 6.3 Syndrome Based Decoding
. s ¥ ¥ & &&4&& s EEE————

— Example 6.6: Given the (7, 3) RS codeword generated in Example 6.5, after the

channel, the received word is
T=(c",0"cl,0° 0%, 07 ).

With the received word, we can calculate syndromes as
S,=r(c)=0",S5,=r(c")=0c",5,=r(c’)=0°,S, =r(c*) =oc".

Running the above Berlekamp-Massey algorithm,we obtain

A A(X) T(x) A
O 0 |-1 1 X o’
1({ 110 1-X X o2
21110 1-o0°x X° o
3| 2|1 1-o°x—oX? o’Xx—o°x® o’
4 1-o’x =X’ o’x’ —co°x®

Therefore, the error locator polynomial is A(x) =1-c°x—x" InF,, c’and c’are its
roots. Therefore, I, and I are corrupted.



% 6.3 Syndrome Based Decoding

— Determine the error magnitudes €;.€;,,---,€; , so that the erroneous symbols can be
corrected by
lezrjl_ejllcjzzrjz_ej Ci :rjw_ejw

21 ' lo

— The syndromes Sv Ze XD ,v=1,2, -, 2t Knowing X, =%, X, =c%,---, X, =o'

[0

from the error Iocatlon polynomial A(x) the above syndrome definition |mpI|es

G G Xi,__eh_ S, ]
X12 Xz2 xf) ejz _ Sz
_X12t x22t X;t__ejw_ _SZt_

— Error magnitudes can be determined from the above set of linear equations.



% 6.3 Syndrome Based Decoding

— The linear equation set can be efficiently solved using Forney's algorithm.

— Syndrome polynomial )
S(X) =S, +S, X+ +5, X =D 8 x
=1

— Error evaluation polynomial (The key equation)
Q(x) = S(x)- A(x) mod x*

— Formal derivative of A(X)=A_X"+ A X"+ + A X+ A,
A'(X)=oA X"+ (@-DA, X"+ + A

2 2
A, +A, ++A, A, A, ++A,

@ -1

— Error magnitude €; can be determined by |&; =— ( ) |




% 6.3 Syndrome Based Decoding

— Example 6.7: Continue from Example 6.6,
The syndrome polynomial is S(x) =S, + S,x+ S,;x* +5,X° = 0° +6°x + 6°x* + o°%°.
The error locator polynomial is A(X) =1-o°x—x’,
The error evaluation polynomial is Q(x) = S(x)- A(x)mod x* = c*x + &°.
Formal derivative of A(x) is A'(X)=c".
Error magnitudes are

oY)
SRNCHIE
0,
TR

As aresult,C,=I,—-¢6,=0 ¢ =r-6=0"



% 6.3 Syndrome Based Decoding

— BM decoding performances over AWGN channel with BPSK.

1.LE+00

1.E-01

1.E-02

FER

1.LE-03

1.E-04

1.E-05

SNR (dB)

= . = ~ ~
RN ~
\ ~
b
~
Y
b Y
\
LY
hS
N «— Uncoded
N
N
N
LY
~
/ .
RS(127, 93) — RS(7,3) Y
VA
RS(63,47) /'
RS(255, 239) \<«—RS(15, 9)
0 1 2 5 6 7 8 9 10
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