Chapter 5 Low-Density Parity-Check Codes

- 5.1 Introduction of LDPC Codes
- 5.2 Tanner Graph Representation
- 5.3 Encoding of LDPC Code
- 5.4 Belief Propagation Decoding
- 5.5 The Sum-Product Algorithm

§ 5.1 Introduction of LDPC Code

- Introduction
- Proposed by Robert Gallager in 1962 [1].
- It was overlooked for over three decades until 1995, it was rediscovered by David Mackay [2].
- It is a linear block code defined by its sparse parity-check matrix which is inherently good for the belief propagation decoding.
- It can well approach the Shannon capacity with a decoding complexity that is quadratic in the dimension of the code.
- Its potential applications include wireless communications and storage devices.
[1] R. Gallager, "Low-Density Parity-Check Codes," IRE Trans. Inform. Theory, vol. IT-8, pp21-28, Jan, 1962.
[2] D. Mackay and R. Neal, "Good codes based on very sparse matrices", in the $5^{\text {th }}$ IMA Conf. Cryptography and Coding, lecture notes in Computer Science Springer. 1995.

§ 5.1 Introduction of LDPC Codes

- LDPC code: A linear block code whose parity-check matrix \mathbf{H} has sparse nonzero elements. For a binary LDPC code, its matrix \mathbf{H} has sparse 1s.
- Column weight $\left(w_{c}\right)$: Number of 1 s in a column of \mathbf{H}. Row weight $\left(w_{r}\right)$: Number of 1 s in a row of \mathbf{H}.
- Regular LDPC codes: Each column of \mathbf{H} has the same column weight, and each row of the \mathbf{H} has the same row weight. It is normally denoted as a (w_{c}, w_{r}, N) LDPC code, where N is the codeword length.
- Irregular LDPC codes: The parity-check matrix has varying column weights and row weights.
- In general, irregular codes have better performance than regular codes. But irregular codes are more difficult to implement.

§ 5.1 Introduction of LDPC Codes

Example 5.1 A regular LDPC code has a parity-check matrix of

$$
\mathbf{H}=\left[\begin{array}{llllllllll}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7} & c_{8} & c_{9} & c_{10} \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right] \begin{aligned}
& Z_{1} \\
& Z_{2} \\
& Z_{3} \\
& Z_{4} \\
& Z_{5}
\end{aligned}
$$

$w_{c}=3, w_{r}=6, M=5, N=10$.
M : Number of parity-check equations. The above matrix implies

$$
\begin{aligned}
& \mathrm{z}_{1}: c_{1}+c_{2}+c_{3}+c_{6}+c_{7}+c_{10}=0 \\
& \mathrm{z}_{2}: c_{1}+c_{3}+c_{5}+c_{6}+c_{8}+c_{9}=0 \\
& \mathrm{z}_{3}: c_{3}+c_{4}+c_{5}+c_{7}+c_{9}+c_{10}=0 \\
& \mathrm{z}_{4}: c_{2}+c_{4}+c_{5}+c_{6}+c_{8}+c_{10}=0 \\
& \mathrm{z}_{5}: c_{1}+c_{2}+c_{4}+c_{7}+c_{8}+c_{9}=0
\end{aligned}
$$

- If all rows of \mathbf{H} are independent, $M=N-K$. Otherwise $M>N-K$.
- Uniform row weight requires $\frac{w_{r}}{N}=\frac{w_{c}}{M}$. If $M=N-K$, then the code rate is $R=\frac{K}{N}=1-\frac{M}{N}=1-\frac{w_{c}}{w_{r}}$. If $M>N-K, R>1-\frac{w_{c}}{w_{r}}$.

§ 5.1 Introduction of LDPC Codes

Example 5.2 Construct a (3, 4, 20) regular LDPC code.
Given a based matrix A as :

$$
\mathbf{A}=\left[\begin{array}{llllllllllllllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Let $\pi_{i}(\mathbf{A})$ denote a random permutation function that permutes the columns of \mathbf{A}.

§ 5.1 Introduction of LDPC Codes

The patiry-check matrix of the $(3,4,20)$ regular LDPC code can be generated by
$\mathbf{H}=\left[\begin{array}{c}\mathbf{A} \\ \pi_{1}(\mathbf{A}) \\ \pi_{2}(\mathbf{A})\end{array}\right]=\left[\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \hdashline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hdashline-2-2- & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
Since there are 13 independent rows, the code's dimension is $K=20-13=7$.
The rate of the code is $R=0.35>1-\frac{w_{c}}{w_{r}}$.
Q: Why is random permutation of columns of A necessary?

§ 5.2 Tanner Graph Representation

- The parity-check matrix $\mathbf{H}\left[h_{m n}\right]$ can be represented as a Tanner graph.
- The parity-check matrix \mathbf{H} of Example 5.1 can be shown as :
check nodes
bit nodes

- The Tanner graph has two sets of nodes, the check nodes $\left(z_{m}\right)$ and the bit nodes (c_{n}). There is a connection between z_{m} and c_{n} if $h_{m n}=1$.
- Belief propagation decoding of a LDPC code is performed based on a Tanner graph : propagating soft information between the check nodes and the bit nodes through the established connections.

§ 5.2 Tanner Graph Representation

check nodes
bit nodes

- $N_{m}=\left\{n: h_{m n}=1\right\}$ - The set of bits that participate the check z_{m}. E.g., $N_{1}=\{1,2,3,6,7,10\}, N_{3}=\{3,4,5,7,9,10\}$.
- $N_{m \backslash n}$ - The set of bits except c_{n} that participate check z_{m}. E.g., $N_{113}=\{1,2,6,7,10\}$.
- $M_{n}=\left\{m: h_{m n}=1\right\}$ - The set of checks in which bit c_{n} is involved. E.g., $M_{1}=\{1,2,5\}, M_{10}=\{1,3,4\}$.
- $M_{n \mid m}$ - The set of checks except check z_{m} in which bit c_{n} is involved. E.g., $M_{112}=\{1,5\}$.

§ 5.2 Tanner Graph Representation

- For a regular LDPC code, every check node is connected to $\left|N_{m}\right|$ bit nodes where $\left|N_{m}\right|=w_{r}$, and every bit node is connected to $\left|M_{n}\right|$ check nodes where $\left|M_{n}\right|=w_{c}$.
- Girth : the shortest cycle in a Tanner graph and it is ≥ 4. It is desirable to avoid a LDPC code whose Tanner graph has a girth of 4 as it would degrade the decoding performance. (In the above Tanner graph, the highlighted cycle is of length 4 and hence the LDPC code has a girth of 4.)

§ 5.3 Encoding of LDPC Codes

- By performing Gaussian elimination, a parity-check matrix H can be transformed into

$$
\mathbf{H}=\left[\mathbf{I}_{M}!\mathbf{P}\right]
$$

where \mathbf{I}_{M} is a $M \times M$ identity matrix.

- Its corresponding generator matrix \mathbf{G} can be written as :

$$
\mathbf{G}=\left[\begin{array}{l:l}
\mathbf{P}^{T} & \mathbf{I}_{K}
\end{array}\right]
$$

where \mathbf{I}_{K} is a $K \times K$ identity matrix.

- Encoding of a K dimensional message vector $\bar{m}=\left[m_{1}, m_{2}, \ldots, m_{K}\right]$ is done by

$$
\begin{aligned}
\bar{c} & =\bar{m} \cdot \mathbf{G} \\
& =\left[c_{1}, c_{2}, \ldots, c_{N-K}, c_{N-K+1}, \ldots, c_{N}\right] \\
& =\left[p_{1}, p_{2}, \ldots, p_{N-K}, m_{1}, \ldots, m_{K}\right] .
\end{aligned}
$$

§ 5.3 Encoding of LDPC Codes

Example 5.3 By performing Gaussian elimination on the matrix \mathbf{H} of Example 5.1, we have

$$
\mathbf{H}=\left[\begin{array}{lllll:lllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Hence, the generator matrix \mathbf{G} is

$$
\mathbf{G}=\left[\begin{array}{lllll:lllll}
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

If the message vector is $\bar{m}=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}\right]$, the codeword \bar{c} is generated as

$$
\bar{c}=\bar{m} \cdot \mathbf{G}=\left[\begin{array}{llllllllll}
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

§ 5.4 Belief Propagation Decoding

- Belief Propagation (BP) decoding is performed based on the Tanner graph of the LDPC code.
- Optimal decoding estimates a codeword by maximizing

$$
\operatorname{Pr}\left[\bar{c} \mid Z_{m}=0, \forall m\right]
$$

Its complexity is $O\left(2^{K}\right)$.

- Suboptimal decoding estimates individual coded bit c_{n} by maximizing

$$
\operatorname{Pr}\left[C_{n}=\theta \mid z_{m}=0, m \in M_{n}\right], \theta \in\{0,1\}
$$

Its complexity is $O\left(K^{2}\right)$.

- BP decoding is a sub-optimal decoding algorithm.

§ 5.4 Belief Propagation Decoding

- BP decoding is to update the following two probabilities iteratively.

1. The probability of bit $C_{n}=\theta(\theta \in\{0,1\})$ conditioned on all its associated checks except z_{m} are satisfied, i.e.,

$$
\begin{equation*}
q_{m n}(\theta)=\operatorname{Pr}\left[c_{n}=\theta \mid z_{m}{ }^{\prime}=0, m^{\prime} \in M_{n \backslash m}\right] \tag{1}
\end{equation*}
$$

2. The probability of check z_{m} is satisfied conditioned on bit $c_{n}=\theta$, i.e.,

$$
\begin{equation*}
r_{m n}(\theta)=\operatorname{Pr}\left[z_{m}=0 \mid C_{n}=\theta\right] \tag{2}
\end{equation*}
$$

§ 5.4 Belief Propagation Decoding

- Since there are N coded bits and M checks, $q_{m n}(\theta)$ and $r_{m n}(\theta)$ should be accommodated in matrices \mathbf{Q} and \mathbf{R}, respectively. \mathbf{Q} and \mathbf{R} are of size $2 M \times N$.

$-\quad$ BP decoding iterations $\mathbf{Q} \underset{\text { Verical update }}{\stackrel{\text { Horiznal update }}{\rightleftarrows}} \mathbf{R}$.
- After a number of iterations, the decision on all the bits c_{n} is made based on \mathbf{Q} by

$$
\begin{equation*}
q_{n}(\theta)=\operatorname{Pr}\left[c_{n}=\theta \mid z_{m}=0, m \in M_{n}\right] \tag{3}
\end{equation*}
$$

§ 5.4 Belief Propagation Decoding

- Initialization:

Given a received symbol vector $\bar{y}=\left(y_{1}, y_{2}, \ldots, y_{N}\right)$, one could obtain the channel observations for all the coded bits as
$\left\{\begin{array}{l}f_{1}(0)=\operatorname{Pr}\left(y_{1} \mid c_{1}=0\right) \\ f_{1}(1)=\operatorname{Pr}\left(y_{1} \mid c_{1}=1\right)\end{array},\left\{\begin{array}{l}f_{2}(0)=\operatorname{Pr}\left(y_{2} \mid c_{2}=0\right) \\ f_{2}(1)=\operatorname{Pr}\left(y_{2} \mid c_{2}=1\right)^{\prime}\end{array}, \ldots,\left\{\begin{array}{l}f_{N}(0)=\operatorname{Pr}\left(y_{N} \mid c_{N}=0\right) \\ f_{N}(1)=\operatorname{Pr}\left(y_{N} \mid c_{N}=1\right)\end{array}\right.\right.\right.$
Before decoding, we assume $\operatorname{Pr}\left(c_{n}=0\right)=\operatorname{Pr}\left(c_{n}=1\right)=\frac{1}{2}, \quad \forall n$.
Hence,

$$
\operatorname{Pr}\left(c_{n}=\theta \mid y_{n}\right)=\operatorname{Pr}\left(y_{n} \mid c_{n}=\theta\right)=f_{n}(\theta), \theta \in\{0,1\}, \forall n .
$$

Matrix \mathbf{Q} is initialized by

$$
q_{m n}(\theta)=f_{n}(\theta) \cdot h_{m n}, \quad \forall m, n .
$$

§ 5.4 Belief Propagation Decoding

- Horizontal update: update $\mathbf{R}\left(r_{m n}(\theta)\right)$ by $\mathbf{Q}\left(q_{m n}(\theta)\right)$.

$$
\begin{aligned}
& r_{m n}(\theta)=\operatorname{Pr}\left[z_{m}=0 \mid c_{n}=\theta\right] \\
& =\sum_{\left\{c_{\left.n^{\prime}, \Sigma \theta_{n^{\prime}}=\theta\right\}}\right.} \operatorname{Pr}\left[z_{m}=0,\left\{c_{n^{\prime}}=\theta_{n^{\prime}}, n^{\prime} \in N_{m} \backslash n\right\} \mid c_{n}=\theta\right]
\end{aligned}
$$

Remark: In (4), it is assumed that all codes bits c_{n} are independent. Moreover, for $\left\{c_{n^{\prime}}, n^{\prime} \in N_{m} \backslash n\right\}$, if $\Sigma \theta_{n^{\prime}}=\theta, \operatorname{Pr}\left[z_{m}=0 \mid\left\{c_{n^{\prime}}=\theta_{n^{\prime}}, n^{\prime} \in N_{m} \backslash n\right\}, c_{n}=\theta\right]=1$. Otherwise, $\operatorname{Pr}\left[z_{m}=0 \mid\left\{c_{n^{\prime}}=\theta_{n^{\prime}}, n^{\prime} \in N_{m} \backslash n\right\}, c_{n}=\theta\right]=0$.

§ 5.4 Belief Propagation Decoding

- Horizontal update: update \mathbf{R} by \mathbf{Q}.

$$
r_{m n}(\theta)=\sum_{\theta=\Sigma_{n^{\prime} \in N_{m} \backslash n}} \prod_{n^{\prime}} q_{m n^{\prime}}(\theta)
$$

With $c_{n}=\theta, \theta=\Sigma \theta_{n^{\prime}}$ for $n^{\prime} \in N_{m} \backslash n$ ensures check z_{m} is satisfied, i.e.,

$$
z_{m}=\sum_{n \in N_{m}} c_{n}=\theta+\sum_{n^{\prime} \in N_{m} \backslash n} \theta_{n^{\prime}}=0
$$

- Example 5.4 For the LDPC code of Example 5.1, if we want to update $r_{11}(1)=\operatorname{Pr}\left[z_{1}=0 \mid c_{1}=1\right]$, we need the remaining bits of z_{1} satisfy $c_{2}+c_{3}+c_{6}+c_{7}+c_{10}=1$.
Bits $c_{2} c_{3} c_{6} c_{7} c_{10}$ have the following 16 permutations:

$$
\begin{aligned}
& 10000,01000,00100,00010,00001,11100,01110,00111 \text {, } \\
& 11001,11010,01101,10101,10011,01011,10110,11111 .
\end{aligned}
$$

Hence, $r_{11}(1)$ is updated by summing the following 16 products.

$$
\left.\begin{array}{l}
q_{12}(1) q_{13}(0) q_{16}(0) q_{17}(0) q_{10}(0) \\
: \\
q_{12}(1) q_{13}(1) q_{16}(1) q_{17}(1) q_{10}(1)
\end{array}\right\} 16
$$

§ 5.4 Belief Propagation Decoding

- Horizontal update: update \mathbf{R} by \mathbf{Q}

$$
r_{m n}(\theta)=\sum_{\theta=\Sigma_{n^{\prime} \in N_{m} \backslash n} \theta_{n^{\prime}} \prod_{n^{\prime} \in N_{m} \backslash n} q_{m n^{\prime}}(\theta), ~(\theta)}
$$

- Tanner graph reflection.
- The update of $r_{11}(1)$ of Example 5.4 can be seen as

$$
r_{11}(1)=\operatorname{Pr}\left[z_{1}=0 \mid c_{1}=1\right] .
$$

The red edges provide information to calculate probability of the black edge.

§ 5.4 Belief Propagation Decoding

- Vertical update: update $\mathbf{Q}\left(q_{m n}(\theta)\right)$ by $\mathbf{R}\left(r_{m n}(\theta)\right)$.
$q_{m n}(\theta)=\operatorname{Pr}\left[c_{n}=\theta \mid z_{m^{\prime}}=0, m^{\prime} \in M_{n} \backslash m\right]$
$=\frac{\operatorname{Pr}\left[z_{m^{\prime}}=0, m^{\prime} \in M_{n} \backslash m \mid c_{n}=\theta\right] \cdot \operatorname{Pr}\left[c_{n}=\theta\right]}{\operatorname{Pr}\left[z_{m^{\prime}}=0, m^{\prime} \in M_{n} \backslash m\right]}$
$=\frac{\prod_{m^{\prime} \in M_{n} \backslash m} \operatorname{Pr}\left[z_{m^{\prime}}=0 \mid c_{n}=\theta\right] \cdot \operatorname{Pr}\left[c_{n}=\theta\right]}{\operatorname{Pr}\left[z_{m^{\prime}}=0, m^{\prime} \in M_{n} \backslash m\right]} \quad r_{m^{\prime} n(\theta)}$
$=\alpha_{m n} \cdot \prod_{m^{\prime} \in M_{n} \backslash m} \operatorname{Pr}\left[Z_{m}^{\prime}=0 \mid c_{n}=\theta\right] \cdot \operatorname{Pr}\left[c_{n}=\theta\right]^{k}$
- In (5), it is assumed that all cheeks are independent.
- In (6), $\alpha_{m n}$ is a normalization factor that ensures $q_{m n}(0)+q_{m n}(1)=1$.

§ 5.4 Belief Propagation Decoding

- Vertical update: update \mathbf{Q} by \mathbf{R}.

$$
q_{m n}(\theta)=\alpha_{m n} \cdot f_{n}(\theta) \cdot \prod_{m^{\prime} \in M_{n} \backslash m} r_{m^{\prime} n}(\theta)
$$

$\alpha_{m n}$ is a normalization factor that ensures $q_{m n}(0)+q_{m n}(1)=1$, i.e.,

$$
\alpha_{m n}=\left[\sum_{\theta \in\{0,1\}} f_{n}(\theta) \cdot \prod_{m^{\prime} \in M_{n} \backslash m} r_{m^{\prime} n}(\theta)\right]^{-1}
$$

- Example 5.5 (Continue from Example 5.4), if we want to apdate

$$
q_{11}(\theta)=\operatorname{Pr}\left[c_{1}=\theta \mid z_{m^{\prime}}=0, m^{\prime} \in M_{1 \backslash 1}\right]
$$

we need to calculate

$$
\begin{aligned}
& q_{11}(0)=\alpha_{11} \cdot f_{1}(0) \cdot\left(r_{21}(0) \times r_{51}(0)\right) \\
& q_{11}(1)=\alpha_{11} \cdot f_{1}(1) \cdot\left(r_{21}(1) \times r_{51}(1)\right)
\end{aligned}
$$

§ 5.4 Belief Propagation Decoding

- Vertical update: update \mathbf{Q} by \mathbf{R}

$$
q_{m n}(\theta)=\alpha_{m n} \cdot f_{n}(\theta) \cdot \prod_{m^{\prime} \in M n \backslash m} r_{m^{\prime} n}(\theta)
$$

- Tanner graph reflection.
- The update of $q_{11}(\theta)$ of Example 5.5 can be seen as

$$
\begin{aligned}
& q_{11}(1)=f_{1}(1) \cdot r_{21}(1) \cdot r_{51}(1) \\
& \text { Again, the red edges provide } \\
& \text { information to update probability } \\
& \text { of the black edge. }
\end{aligned}
$$

§ 5.4 Belief Propagation Decoding

- After each horizontal-vertical iteration, we can calculate $q_{n}(\theta)$ of (3) by

$$
q_{n}(\theta)=\alpha_{n} \cdot f_{n}(\theta) \cdot \prod_{m \in M_{n}} r_{m n}(\theta)
$$

α_{n} is a normalization factor that ensures $q_{n}(0)+q_{n}(1)=1$.

$$
\alpha_{n}=\left[\sum_{\theta \in\{0,1\}} f_{n}(\theta) \cdot \prod_{m \in M n} r_{m n}(\theta)\right]^{-1}
$$

- Decision on bit c_{n}

$$
\left\{\begin{array}{llc}
c_{n}=0, & \text { if } & q_{n}(0)>q_{n}(1) \\
c_{n}=1, & \text { if } & q_{n}(0)<q_{n}(1)
\end{array}\right.
$$

- After decisions are made on all the coded bits, we can obtain an estimated codeword \hat{c}. The iteration will be terminated if \hat{c} is a valid codeword, i.e., $\hat{c} \cdot \mathbf{H}^{\mathrm{T}}=0$. Otherwise, the iterative horizontal-vertical updates continue until $\hat{c} \cdot \mathbf{H}^{\mathrm{T}}=0$ is satisfied, or the designed maximal iteration number is reached.
- The BP decoding algorithm is also called the Sum-Product algorithm.

§ 5.4 Belief Propagation Decoding

Why low density of \mathbf{H} is important for BP decoding?

- The Horizontal update computation of $\prod_{n m^{\prime}}(\theta)$ assumes that all the coded
 checks are independent.
- However, once cycles exist in the Tanner graph, the independence will disappear. For example, when two coded bits are involved in the same two checks, a cycle of length 4 will exist in the Tanner graph.
- A low density \mathbf{H} inherits less cycles especially the cycles of length 4. The BP decoding would favour this type of code - low-density parity-check codes.

§ 5.4 Belief Propagation Decoding

Why low density of \mathbf{H} is important for BP decoding?

Example 5.6 Let us look at BP decoding of the LDPC code of Example 5.1.

- By examing the Tanner graph, we can see coded bits c_{1} and c_{2} are involved in both checks z_{1} and z_{5}, yielding a cycle of length 4.
- Horizontal update :
- Vertical update :

- Observations:

1) (1) - 2 process, bits c_{1} and c_{2} start to correlate.
2) (1) - (2) - (3) process, part of the information used to update $r_{m n}(\theta)$ comes for c_{n} itself.

§ 5.4 Belief Propagation Decoding

Example 5.7 (Continue from Example 5.3). If the LDPC codeword
$\bar{c}=\left[\begin{array}{llllllllll}0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$ is transmitted to a memoryless channel, with the received symbol vector \bar{y}, we obtain the channel observation matrix \mathbf{F} as

$$
\mathbf{F}=\left[\begin{array}{c:c:c:c:c:c:c:c:c:c}
0.78 & 0.84 & 0.81 & 0.52 & 0.45 & 0.13 & 0.82 & 0.21 & 0.75 & 0.24 \\
0.22 & 0.16 & 0.19 & 0.48 & 0.55 & 0.87 & 0.18 & 0.79 & 0.25 & 0.76
\end{array}\right]
$$

Matrix \mathbf{Q} is initialized as :

$$
\mathbf{Q}=\left[\begin{array}{c:c:c:c:c:c:c:c:c:c}
0.78 & 0.84 & 0.81 & 0 & 0 & 0.13 & 0.82 & 0 & 0 & 0.24 \\
0.22 & 0.16 & 0.19 & 0 & 0 & 0.87 & 0.18 & 0 & 0 & 0.76 \\
\hdashline 0.78 & 0 & 0.81 & 0 & 0.45 & 0.13 & 0 & 0.21 & 0.75 & 0 \\
0.22 & 0 & 0.19 & 0 & 0.55 & 0.87 & 0 & 0.79 & 0.25 & 0 \\
\hdashline 0 & 0 & 0.81 & 0.52 & 0.45 & 0 & 0.82 & 0 & 0.75 & 0 \\
0 & 0 & 0.19 & 0.48 & 0.55 & 0 & 0.18 & 0 & 0.25 & 0.76 \\
\hdashline 0 & 0.84 & 0 & 0.52 & 0.45 & 0.13 & 0 & 0.21 & 0 & 0.24 \\
0 & 0.16 & 0 & 0.48 & 0.55 & 0.87 & 0 & 0.79 & 0 & 0.76 \\
\hdashline 0.78 & 0.84 & 0 & 0.52 & 0 & 0 & 0.82 & 0.21 & 0.75 & 0 \\
0.22 & 0.16 & 0 & 0.48 & 0 & 0 & 0.18 & 0.79 & 0.25 & 0
\end{array}\right]
$$

§ 5.4 Belief Propagation Decoding

After the $1^{\text {st }}$ Horizontal-Vertical iteration, we have

$\mathbf{R}=$	0.551914	0.542753	0.546890	0	0	0.460714	0.545425	0	0	0.444092
	0.448086	0.457247	0.453110	0	0	0.539286	0.454575	0	0	0.555908
	0.493347	0	0.493991	0	0.537255	0.505034	0	0.506423	0.493347	0
	0.506653	0	0.506009	0	0.462745	0.494966	0	0.493577	0.507451	0
	0	0	0.500333	0.505158	0.497937	0	0.500322	0	0.500413	0.499603
	0	0	0.499667	0.494842	0.502063	0	0.499678	0	0.499587	0.500397
	0	0.500446	0	0.507588	0.496965	0.499590	0	0.499477	0	0.499416
	0	0.499554	0	0.492412	0.503035	0.500410	0	0.500523	0	0.500584
	0.497476	0.497921	0	0.464662	0	0	0.497791	0.502437	0.497173	0
	0.502524	0.502079	0	0.535338	0	0	0.502209	0.497563	0.502827	0

§ 5.4 Belief Propagation Decoding

Q =	[0.773636	0.839121	, 0.806481	0	0	0.132106	, 0.818884	0	0	0.239285
	0.226364	0.160879	0.193519	0	0	0.867894	0.181116	0	0	0.760715
	0.812140	0	0.837461	0	0.444958	0.113039	0	0.211273	0.748185	0
	0.187860	0	0.162539	0	0.555042	0.886961	0	0.788727	0.251815	0
	0	0	0.833978	0.492203	0.484126	0	-0.844187	0	0.742212	0.201076
	0	0	0.166022	0.507797	0.515874	0	0.155813	0	0.257788	0.798924
	0	0.860727	0	0.489773	0.485097	0.115241	0	0.215940	0	0.201196
	0	0.139273	0	0.5110227	0.514903	0.884759	0	0.784060	0	0.798804
	0.809608	0.861934	0	0.532711	0	0	0.845514	0.213942	0.744684	0
	0.190392	0.138066	0	0.467289	0	0	0.154486	0.786058	0.255316	0

Hence, the a posteriori probability matrix \mathbf{Q}^{\prime} is :

$$
\mathbf{Q}^{\prime}=\left[\begin{array}{lllllllll}
0.808046 & 0.860941 & 0.834162 & 0.497361 & 0.482065 & 0.115074 & 0.844356 & 0.215586 & 0.742528 \\
0.191954 & 0.139059 & 0.165838 & 0.502639 & 0.517935 & 0.884926 & 0.155644 & 0.784414 & 0.257472
\end{array} 0.799179\right]
$$

The estimated codeword is $\hat{c}=\left[\begin{array}{llllllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1\end{array}\right]$. It does not satisfy $\hat{c} \cdot \mathbf{H}^{\mathrm{T}}=0$ and the iteration continues...

§ 5.4 Belief Propagation Decoding

After the $3^{\text {rd }}$ Horizontal-Vertical iteration, we have

$\mathbf{R}=$	0.549960	0.540086	0.544369	0	0	0.463092	0.542650	0	0	0.447890
	0.450040	0.459914	0.455631	0	0	0.536908	0.457350	0	0	0.552110
	0.493114	0	0.493650	0	0.545393	0.505532	0	0.507453	0.491301	0
	0.506886	0	0.506350	0	0.454607	0.494468	0	0.492547	0.508699	0
	0	0	0.499989	0.500176	0.502649	0	0.499989	0	0.499985	0.500012
	0	0	0.500011	0.499824	0.497351	0	0.500011	0	0.500015	0.499988
	0	0.499975	0	0.500415	0.503915	0.500023	0	0.500032	0	0.500030
	0	0.500025	0	0.499585	0.496085	0.49977	0	0.499968	0	0.499970
	0.496595	0.497094	0	0.457904	0	0	0.496955	0.503693	0.495668	0
	0.503405	0.502906	0	0.542096	0	0	0.503045	0.496307	0.504332	0

§ 5.4 Belief Propagation Decoding

$\mathbf{Q}=$	$\left[\begin{array}{l}0.772854 \\ 0.227146\end{array}\right.$	0.838418 0.161582	0.806053	0	0	0.132534	0.818189	0	0	0.240031
	0.810391	0	0.835883	0	0.456507	0.114117	0	0.212482	0.746725	${ }_{0}^{------1}$
	0.189609	0	0.164117	0	0.543493	0.885823	0	0.787518	0.253275	0
	0	0	0.832375	0.478244	0.499266	0	0.842265	0	0.740099	0.230955
	0	0	0.167625	0.521756	0.500734	0	0.157735	0	0.259901	0.796045
	0	0.859034	0	0.478005	0.498000	0.116425	0	0.217493	0	0.203943
	0	0.140996	0	0.521995	0.502000	0.83575	0	0.782507	0	0.796057
	0.808242	0.860424	0	0.520590	0	0	0.843871	0.215010	0.743407	0
	0.191758	0.139576	0	0.479410	0	0	0.156129	0.784990	0.256593	0

The a posteriori probability matrix \mathbf{Q} ' becomes :

$$
\mathbf{Q}^{\prime}=\left[\begin{array}{lllllllll}
0.806122 & 0.859023 & 0.832369 & 0.478419 & 0.501915 & 0.116434 & 0.842260 & 0.217514 & 0.740088 \\
0.193878 & 0.140977 & 0.167631 & 0.521581 & 0.498085 & 0.883566 & 0.157740 & 0.782486 & 0.259913
\end{array} 0.796037\right]
$$

The estimated codeword is $\hat{c}=\left[\begin{array}{llllllllll}0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$. It satisfies $\hat{c} \cdot \mathbf{H}^{\mathrm{T}}=0$ and the decoding terminates.

§ 5.4 Belief Propagation Decoding

- AWGN channel, BPSK modulation
- Design code rate: 0.5

§ 5.5 The Sum-Product Algorithm

- The BP decoding algorithm can be simplified in logrithm domain.
- Regarding bit c_{n}, its probabilities $\operatorname{Pr}\left(c_{n}=0\right)$ and $\operatorname{Pr}\left(c_{n}=1\right)$ can be unified in log likelihood ratio (LLR) as

$$
L L R\left(c_{n}\right)=\ln \frac{\operatorname{Pr}\left(c_{n}=0\right)}{\operatorname{Pr}\left(c_{n}=1\right)}
$$

Inversely,

$$
\operatorname{Pr}\left(c_{n}=0\right)=\frac{1}{1+e^{-L L R\left(c_{n}\right)}}, \operatorname{Pr}\left(c_{n}=1\right)=\frac{1}{1+e^{L L R\left(c_{n}\right)}} .
$$

- In the Horizontal update

$$
r_{m n}(\theta)=\sum_{\left\{c_{n^{\prime}}: \Sigma \theta_{n^{\prime}}=\theta\right\} n_{n^{\prime} \in N_{m} \backslash n}} q_{m n^{\prime}}(\theta) .
$$

If $c_{n}=\theta=1$, we need to consider the permutation of $\left\{c_{n^{\prime}}\right\}$ in which there are odd number (\#) of 1 s , so that $z_{m}=c_{n}+\Sigma c_{n^{\prime}}=0$. Otherwise, if $c_{n}=\theta=0$, we need to consider the permutation of $\left\{c_{n^{\prime}}\right\}$ in which there are even (\#) of 1 s .

§ 5.5 The Sum-Product Algorithm

- Lemma Given a binary sequence of length N in which each bit is independent, the probability of bit n being 1 is p_{n}. Then,

$$
\begin{aligned}
& \operatorname{Pr}[\text { there are even \# of } 1 \mathrm{~s}]=\frac{1}{2}+\frac{1}{2} \prod_{n=1}^{N}\left(1-2 p_{n}\right), \\
& \operatorname{Pr}[\text { there are odd \# of } 1 \mathrm{~s}]=\frac{1}{2}-\frac{1}{2} \prod_{n=1}^{N}\left(1-2 p_{n}\right) .
\end{aligned}
$$

- Applying the above lemma, the BP decoding becomes Horizontal update :

$$
\begin{align*}
& r_{m n}(0)=\frac{1}{2}+\frac{1}{2} \prod_{n^{\prime} \in N_{m} \backslash n}\left(1-2 q_{m n^{\prime}}(1)\right), \tag{7}\\
& r_{m n}(1)=\frac{1}{2}-\frac{1}{2} \prod_{n^{\prime} \in N_{m} \backslash n}\left(1-2 q_{m n^{\prime}}(1)\right) \tag{8}
\end{align*}
$$

Vertical update :

$$
\begin{align*}
q_{m n}(0) & =\alpha_{m n} \cdot f_{n}(0) \cdot \Pi_{m^{\prime} \in M_{n} \backslash m} r_{m^{\prime} n}(0), \tag{9}\\
q_{m n}(1) & =\alpha_{m n} \cdot f_{n}(1) \cdot \Pi_{m^{\prime} \in M_{n} \backslash m} r_{m^{\prime} n}(1) . \tag{10}
\end{align*}
$$

§ 5.5 The Sum-Product Algorithm

- Let us define the following LLR values

$$
l_{n}=\ln \frac{f(0)}{f(1)}, u_{m n}=\ln \frac{q_{m n}(0)}{q_{m n}(1)}, v_{m n}=\ln \frac{r_{\mathrm{mn}}(0)}{r_{m n}(1)}, l_{n, p}=\ln \frac{q_{n}(0)}{q_{n}(1)} .
$$

- Equip with $\tanh \frac{x}{2}=\frac{e^{x}-1}{e^{x}+1}, 2 \tanh ^{-1} x=\ln \frac{1+x}{1-x}$.
- Horizontal update: $u_{m n} \rightarrow v_{m n}$
$\tanh \frac{u_{m n}}{2}=\frac{e^{u_{m n}}-1}{e^{u_{m n}}+1}=\frac{\frac{q_{m n}(0)}{q_{m n}(1)}-1}{\frac{q_{m n}(0)}{q_{m n}(1)}+1}=\frac{q_{m n}(0)-q_{m n}(1)}{q_{m n}(0)+q_{m n}(1)}=1-2 q_{m n}(1)$.
(7) and (8) become

$$
\begin{gather*}
r_{m n}(0)=\frac{1}{2}+\frac{1}{2} \prod_{n^{\prime} \in N_{m} \backslash n} \tanh \frac{u_{m n^{\prime}}}{2}, \tag{11}\\
r_{m n}(1)=\frac{1}{2}-\frac{1}{2} \prod_{n^{\prime} \in N_{m} \backslash n} \tanh \frac{u_{m n^{\prime}}}{2} . \tag{12}\\
v_{m n}=\ln \frac{(11)}{(12)}=2 \tanh ^{-1}\left(\prod_{n^{\prime} \in N_{m} \backslash n} \tanh \frac{u_{m n^{\prime}}}{2}\right) .
\end{gather*}
$$

§ 5.5 The Sum-Product Algorithm

- Vertical update : $v_{m n} \rightarrow u_{m n}$

$$
\begin{gathered}
u_{m n}=\ln \frac{(9)}{(10)}=\ln \frac{f(0)}{f(1)}+\sum_{m^{\prime} \in M_{n} \backslash m} \ln \frac{r_{m^{\prime} n}(0)}{r_{m^{\prime} n}(1)} \\
u_{m n}=l_{n}+\sum_{m^{\prime} \in M_{n} \backslash m} v_{m^{\prime} n}
\end{gathered}
$$

- Aposteriori LLR

$$
l_{n, p}=\ln \frac{q_{n}(0)}{q_{n}(1)}=l_{n}+\sum_{m \in M_{n}} v_{m n}
$$

- Decision on c_{n}

$$
\text { If } l_{n, p} \geq 0, \hat{c}_{n}=0 \text {; If } l_{n, p}<0, \hat{c}_{n}=1
$$

