Chapter 5 Low-Density Parity-Check Codes

- 5.1 Introduction of LDPC Codes
- 5.2 Tanner Graph Representation
- 5.3 Encoding of LDPC Code
- 5.4 Belief Propagation Decoding
- 5.5 The Sum-Product Algorithm

Introduction

- Proposed by Robert Gallager in 1962 [1].
- It was overlooked for over three decades until 1995, it was rediscovered by David Mackay [2].
- It is a linear block code defined by its sparse parity-check matrix which is inherently good for the belief propagation decoding.
- It can well approach the Shannon capacity with a decoding complexity that is quadratic in the dimension of the code.
- Its potential applications include wireless communications and storage devices.

^[1] R. Gallager, "Low-Density Parity-Check Codes," IRE Trans. Inform. Theory, vol. IT-8, pp21-28, Jan, 1962.

^[2] D. Mackay and R. Neal, "Good codes based on very sparse matrices", in *the 5th IMA Conf. Cryptography and Coding*, lecture notes in Computer Science Springer. 1995.

- LDPC code: A linear block code whose parity-check matrix **H** has sparse non-zero elements. For a binary LDPC code, its matrix **H** has sparse 1s.
- Column weight (w_c) : Number of 1s in a column of **H**. Row weight (w_r) : Number of 1s in a row of **H**.
- Regular LDPC codes: Each column of **H** has the same column weight, and each row of the **H** has the same row weight. It is normally denoted as a (w_c, w_r, N) LDPC code, where N is the codeword length.
- Irregular LDPC codes: The parity-check matrix has varying column weights and row weights.
- In general, irregular codes have better performance than regular codes. But irregular codes are more difficult to implement.

Example 5.1 A regular LDPC code has a parity-check matrix of

$$w_c = 3$$
, $w_r = 6$, $M = 5$, $N = 10$.

M : Number of parity-check equations. The above matrix implies

$$z_1: c_1 + c_2 + c_3 + c_6 + c_7 + c_{10} = 0$$

$$z_2: c_1 + c_3 + c_5 + c_6 + c_8 + c_9 = 0$$

$$z_3: c_3 + c_4 + c_5 + c_7 + c_9 + c_{10} = 0$$

$$z_4: c_2 + c_4 + c_5 + c_6 + c_8 + c_{10} = 0$$

$$z_5: c_1 + c_2 + c_4 + c_7 + c_8 + c_9 = 0$$

- If all rows of **H** are independent, M = N K. Otherwise M > N K.
- Uniform row weight requires $\frac{w_r}{N} = \frac{w_c}{M}$. If M = N K, then the code rate is $R = \frac{K}{N} = 1 \frac{M}{N} = 1 \frac{w_c}{N}$. If M > N K, $R > 1 \frac{w_c}{w_r}$.

Example 5.2 Construct a (3, 4, 20) regular LDPC code.

Given a based matrix A as:

Let $\pi_i(\mathbf{A})$ denote a random permutation function that permutes the columns of \mathbf{A} .

The patiry-check matrix of the (3, 4, 20) regular LDPC code can be generated by

Since there are 13 independent rows, the code's dimension is K = 20 - 13 = 7.

The rate of the code is $R = 0.35 > 1 - \frac{w_c}{...}$.

Q: Why is random permutation of columns of A necessary?

§ 5.2 Tanner Graph Representation

- The parity-check matrix \mathbf{H} [h_{mn}] can be represented as a Tanner graph.
- The parity-check matrix H of Example 5.1 can be shown as:

- The Tanner graph has two sets of nodes, the check nodes (z_m) and the bit nodes (c_n) . There is a connection between z_m and c_n if $h_{mn}=1$.
- Belief propagation decoding of a LDPC code is performed based on a Tanner graph: propagating soft information between the check nodes and the bit nodes through the established connections.

§ 5.2 Tanner Graph Representation

- $N_m = \{n : h_{mn} = 1\}$ The set of bits that participate the check z_m . E.g., $N_1 = \{1, 2, 3, 6, 7, 10\}, N_3 = \{3, 4, 5, 7, 9, 10\}$.
- $N_{m \mid n}$ The set of bits except c_n that participate check z_m . E.g., $N_{1 \mid 3} = \{1, 2, 6, 7, 10\}$.
- $M_n = \{m : h_{mn} = 1\}$ The set of checks in which bit c_n is involved. E.g., $M_1 = \{1, 2, 5\}, M_{10} = \{1, 3, 4\}.$
- $M_{n \mid m}$ The set of checks except check z_m in which bit c_n is involved. E.g., $M_{1 \mid 2} = \{1, 5\}$.

§ 5.2 Tanner Graph Representation

- For a regular LDPC code, every check node is connected to $|N_m|$ bit nodes where $|N_m| = w_r$, and every bit node is connected to $|M_n|$ check nodes where $|M_n| = w_c$.
- Girth: the shortest cycle in a Tanner graph and it is ≥ 4 . It is desirable to avoid a LDPC code whose Tanner graph has a girth of 4 as it would degrade the decoding performance. (In the above Tanner graph, the highlighted cycle is of length 4 and hence the LDPC code has a girth of 4.)

§ 5.3 Encoding of LDPC Codes

 By performing Gaussian elimination, a parity-check matrix **H** can be transformed into

$$\mathbf{H} = [\mathbf{I}_M \mid \mathbf{P}]$$
 where \mathbf{I}_M is a $M \times M$ identity matrix.

- Its corresponding generator matrix \mathbf{G} can be written as: $\mathbf{G} = [\mathbf{P}^T \mid \mathbf{I}_K]$ where \mathbf{I}_K is a $K \times K$ identity matrix.
- Encoding of a K dimensional message vector $\overline{m} = [m_1, m_2, ..., m_K]$ is done by

$$ar{c} = ar{m} \cdot \mathbf{G}$$

$$= [c_1, c_2, ..., c_{N-K}, c_{N-K+1}, ..., c_N]$$

$$= [p_1, p_2, ..., p_{N-K}, m_1, ..., m_K].$$

§ 5.3 Encoding of LDPC Codes

Example 5.3 By performing Gaussian elimination on the matrix **H** of **Example 5.1**, we have

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & | & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & | & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & | & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & | & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Hence, the generator matrix G is

$$\mathbf{G} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & | & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & | & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & | & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & | & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & | & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

If the message vector is $\overline{m} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}$, the codeword \overline{c} is generated as

$$\overline{c} = \overline{m} \cdot \mathbf{G} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

- Belief Propagation (BP) decoding is performed based on the Tanner graph of the LDPC code.
- Optimal decoding estimates a codeword by maximizing $\Pr\left[\overline{c} \mid z_m = 0, \forall m\right]$ Its complexity is $O(2^K)$.
- Suboptimal decoding estimates individual coded bit c_n by maximizing $\Pr\left[c_n = \theta \mid z_m = 0, m \in M_n\right], \theta \in \{0,1\}$ Its complexity is $O(K^2)$.
- BP decoding is a sub-optimal decoding algorithm.

- BP decoding is to update the following two probabilities iteratively.
- 1. The probability of bit $c_n = \theta$ ($\theta \in \{0,1\}$) conditioned on all its associated checks except z_m are satisfied, i.e.,

$$q_{mn}(\theta) = \Pr[c_n = \theta \mid z_m' = 0, m' \in M_{n \setminus m}] \tag{1}$$

2. The probability of check z_m is satisfied conditioned on bit $c_n = \theta$, i.e.,

$$r_{mn}(\theta) = \Pr[z_m = 0 | c_n = \theta] \tag{2}$$

Since there are N coded bits and M checks, $q_{mn}(\theta)$ and $r_{mn}(\theta)$ should be accommodated in matrices **Q** and **R**, respectively. **Q** and **R** are of size $2M \times N$.

$$\mathbf{Q} = \begin{bmatrix} q_{11}(0) & q_{12}(0) & \dots & \dots & q_{1N}(0) \\ q_{11}(1) & q_{12}(1) & \dots & \dots & q_{1N}(1) \\ q_{21}(0) & q_{22}(0) & \dots & \dots & q_{2N}(0) \\ q_{21}(1) & q_{22}(1) & \dots & \dots & q_{2N}(1) \\ \vdots & \vdots & \dots & \dots & \vdots \\ q_{M1}(0) & q_{M2}(0) & \dots & \dots & q_{MN}(0) \\ q_{M1}(1) & q_{M2}(1) & \dots & \dots & q_{MN}(1) \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} r_{11}(0) & r_{12}(0) & \dots & \dots & r_{1N}(0) \\ r_{11}(1) & r_{12}(1) & \dots & \dots & r_{1N}(1) \\ r_{21}(0) & r_{22}(0) & \dots & \dots & r_{2N}(0) \\ r_{21}(1) & r_{22}(1) & \dots & \dots & r_{2N}(1) \\ \vdots & \vdots & \dots & \dots & \vdots \\ r_{M1}(0) & r_{M2}(0) & \dots & \dots & r_{MN}(0) \\ r_{M1}(1) & r_{M2}(1) & \dots & \dots & r_{MN}(1) \end{bmatrix}$$

$$\begin{bmatrix} q_{11}(0) & q_{12}(0) & \dots & \dots & q_{1N}(0) \\ q_{11}(1) & q_{12}(1) & \dots & \dots & q_{1N}(1) \\ q_{21}(0) & q_{22}(0) & \dots & \dots & q_{2N}(0) \\ q_{21}(1) & q_{22}(1) & \dots & \dots & q_{2N}(1) \\ \vdots & \vdots & \dots & \dots & \vdots \\ q_{M1}(0) & q_{M2}(0) & \dots & \dots & q_{MN}(0) \\ q_{M1}(1) & q_{M2}(1) & \dots & \dots & q_{MN}(1) \end{bmatrix}$$

$$\begin{bmatrix} r_{11}(0) & r_{12}(0) & \dots & \dots & r_{1N}(0) \\ r_{11}(1) & r_{12}(1) & \dots & \dots & r_{2N}(1) \\ r_{21}(0) & r_{22}(0) & \dots & \dots & r_{2N}(0) \\ r_{21}(1) & r_{22}(1) & \dots & \dots & r_{2N}(1) \\ \vdots & \vdots & \dots & \dots & \vdots \\ r_{M1}(0) & r_{M2}(0) & \dots & \dots & r_{MN}(0) \\ r_{M1}(1) & r_{M2}(1) & \dots & \dots & r_{MN}(1) \end{bmatrix}$$

- Horizontal update - BP decoding iterations $\mathbf{Q} \xrightarrow{\mathsf{Vertical} \ \mathsf{update}} \mathbf{R}$.
- After a number of iterations, the decision on all the bits c_n is made based on **Q** by

$$q_n(\theta) = \Pr[c_n = \theta \mid z_m = 0, m \in M_n]$$
(3)

– Initialization:

Given a received symbol vector $\bar{y} = (y_1, y_2, ..., y_N)$, one could obtain the channel observations for all the coded bits as

$$\begin{cases} f_1(0) = \Pr(y_1|c_1 = 0) & f_2(0) = \Pr(y_2|c_2 = 0) \\ f_1(1) = \Pr(y_1|c_1 = 1) & f_2(1) = \Pr(y_2|c_2 = 1) \end{cases} \begin{cases} f_N(0) = \Pr(y_N|c_N = 0) \\ f_N(1) = \Pr(y_N|c_N = 1) \end{cases}$$

Before decoding, we assume $Pr(c_n = 0) = Pr(c_n = 1) = \frac{1}{2}$, $\forall n$.

Hence,

$$Pr(c_n = \theta | y_n) = Pr(y_n | c_n = \theta) = f_n(\theta), \theta \in \{0,1\}, \forall n.$$

Matrix **Q** is initialized by

$$q_{mn}(\theta) = f_n(\theta) \cdot h_{mn}, \ \forall m, n.$$

- Horizontal update: update $\mathbf{R}(r_{mn}(\theta))$ by $\mathbf{Q}(q_{mn}(\theta))$.

$$r_{mn}(\theta) = \Pr[z_{m} = 0 \mid c_{n} = \theta]$$

$$= \sum_{\{c_{n'}, \Sigma \theta_{n'} = \theta\}} \Pr[z_{m} = 0, \{c_{n'} = \theta_{n'}, n' \in N_{m} \setminus n\} \mid c_{n} = \theta]$$

$$= \sum_{\{c_{n'}, \Sigma \theta_{n'} = \theta\}} \Pr[z_{m} = 0 \mid \{c_{n'} = \theta_{n'}, n' \in N_{m} \setminus n\}, c_{n} = \theta] \cdot \Pr[\{c_{n'} = \theta_{n'}, n' \in N_{m} \setminus n\}]$$

$$= \sum_{\{c_{n'}, \Sigma \theta_{n'} = \theta\}} \Pr[z_{m} = 0 \mid \{c_{n'} = \theta_{n'}, n' \in N_{m} \setminus n\}, c_{n} = \theta] \cdot \prod_{n' \in N_{m} \setminus n} \Pr(c_{n'} = \theta_{n'})$$

$$= \sum_{\{c_{n'}, \Sigma \theta_{n'} = \theta\}} \prod_{n' \in N_{m} \setminus n} \Pr(c_{n'} = \theta_{n'}) \qquad (4)$$

Remark: In (4), it is assumed that all codes bits c_n are independent. Moreover, for $\{c_{n'}, n' \in N_m \setminus n\}$, if $\Sigma \theta_{n'} = \theta$, $\Pr[z_m = 0 \mid \{c_{n'} = \theta_{n'}, n' \in N_m \setminus n\}, c_n = \theta] = 1$. Otherwise, $\Pr[z_m = 0 \mid \{c_{n'} = \theta_{n'}, n' \in N_m \setminus n\}, c_n = \theta] = 0$.

Horizontal update: update R by Q.

$$r_{mn}(\theta) = \sum_{\theta = \sum_{n' \in N_m \setminus n}} \prod_{\theta_{n'}} \prod_{n' \in N_m \setminus n} q_{mn'}(\theta)$$

With $c_n = \theta$, $\theta = \Sigma \theta_{n'}$ for $n' \in N_m \setminus n$ ensures check z_m is satisfied, i.e.,

$$z_m = \sum_{n \in N_m} c_n = \theta + \sum_{n' \in N_m \setminus n} \theta_{n'} = 0$$

- Example 5.4 For the LDPC code of Example 5.1, if we want to update

 $r_{11}(1) = \Pr[z_1 = 0 \mid c_1 = 1]$, we need the remaining bits of z_1 satisfy $c_2 + c_3 + c_6 + c_7 + c_{10} = 1$.

Bits $c_2 c_3 c_6 c_7 c_{10}$ have the following 16 permutations:

10000, 01000, 00100, 00010, 00001, 11100, 01110, 00111, 11001, 11010, 01101, 10101, 10011, 01011, 10110, 11111.

Hence, $r_{11}(1)$ is updated by summing the following 16 products.

$$q_{12}(1)q_{13}(0)q_{16}(0)q_{17}(0)q_{10}(0)$$

$$\vdots$$

$$q_{12}(1)q_{13}(1)q_{16}(1)q_{17}(1)q_{10}(1)$$

Horizontal update: update R by Q

$$r_{mn}(\theta) = \sum_{\theta = \sum_{n' \in N_m \setminus n} \theta_{n'}} \prod_{n' \in N_m \setminus n} q_{mn'}(\theta)$$

- Tanner graph reflection.
 - The update of $r_{11}(1)$ of **Example 5.4** can be seen as

$$r_{11}(1) = \Pr[z_1 = 0 | c_1 = 1].$$

The red edges provide information to calculate probability of the black edge.

- Vertical update: update $\mathbf{Q}(q_{mn}(\theta))$ by $\mathbf{R}(r_{mn}(\theta))$.

$$q_{mn}(\theta) = \Pr[c_n = \theta \mid z_{m'} = 0, m' \in M_n \backslash m]$$

$$= \frac{\Pr[z_{m'} = 0, m' \in M_n \backslash m \mid c_n = \theta] \cdot \Pr[c_n = \theta]}{\Pr[z_{m'} = 0, m' \in M_n \backslash m]}$$

$$= \frac{\prod_{m' \in M_n \setminus m} \Pr[z_{m'} = 0 \mid c_n = \theta] \cdot \Pr[c_n = \theta]}{\Pr[z_{m'} = 0, m' \in M_n \setminus m]} r_{m'n(\theta)}$$
(5)

$$= \alpha_{mn} \cdot \prod_{m' \in M_n \setminus m} \left[\Pr[z_{m'} = 0 \mid c_n = \theta] \right] \cdot \Pr[c_n = \theta]$$
(6)

- In (5), it is assumed that all cheeks are independent.
- In (6), α_{mn} is a normalization factor that ensures $q_{mn}(0) + q_{mn}(1) = 1$.

Vertical update: update Q by R.

$$q_{mn}(\theta) = \alpha_{mn} \cdot f_n(\theta) \cdot \prod_{m' \in M_n \setminus m} r_{m'n}(\theta)$$

 α_{mn} is a normalization factor that ensures $q_{mn}(0) + q_{mn}(1) = 1$, i.e.,

$$\alpha_{mn} = \left[\sum_{\theta \in \{0,1\}} f_n(\theta) \cdot \prod_{m' \in M_n \setminus m} r_{m'n}(\theta) \right]^{-1}$$

- **Example 5.5** (Continue from **Example 5.4**), if we want to apdate

$$q_{11}(\theta) = \Pr[c_1 = \theta \mid z_{m'} = 0, m' \in M_{1 \setminus 1}]$$

we need to calculate

$$q_{11}(0) = \alpha_{11} \cdot f_{1}(0) \cdot (r_{21}(0) \times r_{51}(0))$$
$$q_{11}(1) = \alpha_{11} \cdot f_{1}(1) \cdot (r_{21}(1) \times r_{51}(1))$$

Vertical update: update Q by R

$$qmn(\theta) = \alpha mn \cdot fn(\theta) \cdot \prod_{m' \in Mn \setminus m} rm'n(\theta)$$

- Tanner graph reflection.
 - The update of $q_{11}(\theta)$ of **Example 5.5** can be seen as

$$q_{11}(1) = f_1(1) \cdot r_{21}(1) \cdot r_{51}(1)$$

Again, the red edges provide information to update probability of the black edge.

- After each horizontal-vertical iteration, we can calculate $q_n(\theta)$ of (3) by

$$q_n(\theta) = \alpha_n \cdot f_n(\theta) \cdot \prod r_{mn}(\theta)$$

 α_n is a normalization factor that ensures $q_n(0) + q_n(1) = 1$.

$$\alpha_n = \left[\sum_{\theta \in \{0,1\}} f_n(\theta) \cdot \prod_{m \in Mn} r_{mn}(\theta)\right]^{-1}$$

- Decision on bit c_n $\begin{cases} c_n = 0, & \text{if } q_n(0) > q_n(1) \\ c_n = 1, & \text{if } q_n(0) < q_n(1) \end{cases}$

- After decisions are made on all the coded bits, we can obtain an estimated codeword \hat{c} . The iteration will be terminated if \hat{c} is a valid codeword, i.e., $\hat{c} \cdot \mathbf{H}^{\mathrm{T}} = 0$. Otherwise, the iterative horizontal-vertical updates continue until $\hat{c} \cdot \mathbf{H}^{\mathrm{T}} = 0$ is satisfied, or the designed maximal iteration number is reached.
- The BP decoding algorithm is also called the Sum-Product algorithm.

Why low density of H is important for BP decoding?

- The Horizontal update computation of $\prod_{n' \in N_m \setminus n} q_{mn'}(\theta)$ assumes that all the coded bits are independent. Similarly, the Vertical update of $\prod_{m' \in M_n \setminus m} r_{m'n}(\theta)$ assumes all checks are independent.
- However, once cycles exist in the Tanner graph, the independence will disappear. For example, when two coded bits are involved in the same two checks, a cycle of length 4 will exist in the Tanner graph.
- A low density H inherits less cycles especially the cycles of length 4. The BP decoding would favour this type of code low-density parity-check codes.

Why low density of H is important for BP decoding?

Example 5.6 Let us look at BP decoding of the LDPC code of **Example 5.1**.

- By examing the Tanner graph, we can see coded bits c_1 and c_2 are involved in both checks z_1 and z_5 , yielding a cycle of length 4.

- Horizontal update :
$$r_{11}(\theta)$$
 - $q_{12}(\theta)$ $q_{13}(\theta)$, $q_{16}(\theta)$, $q_{17}(\theta)$, $q_{1,10}(\theta)$ $q_{11}(\theta)$, $q_{13}(\theta)$, $q_{16}(\theta)$, $q_{17}(\theta)$, $q_{1,10}(\theta)$ $q_{11}(\theta)$, $q_{13}(\theta)$, $q_{16}(\theta)$, $q_{17}(\theta)$, $q_{1,10}(\theta)$ $q_{11}(\theta)$ $q_{11}(\theta)$

- Observations:
 - 1) (1)—(2) process, bits c_1 and c_2 start to correlate.
 - 2) (1) = (2) = (3) process, part of the information used to update $r_{mn}(\theta)$ comes for c_n itself.

Example 5.7 (Continue from Example 5.3). If the LDPC codeword

 $\overline{c} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ is transmitted to a memoryless channel, with the received symbol vector \overline{y} , we obtain the channel observation matrix \mathbf{F} as

$$\mathbf{F} = \begin{bmatrix} 0.78 & 0.84 & 0.81 & 0.52 & 0.45 & 0.13 & 0.82 & 0.21 & 0.75 & 0.24 \\ 0.22 & 0.16 & 0.19 & 0.48 & 0.55 & 0.87 & 0.18 & 0.79 & 0.25 & 0.76 \end{bmatrix}$$

Matrix **Q** is initialized as:

$$\mathbf{Q} = \begin{bmatrix} 0.78 & 0.84 & 0.81 & 0 & 0 & 0.13 & 0.82 & 0 & 0 & 0.24 \\ 0.22 & 0.16 & 0.19 & 0 & 0 & 0.87 & 0.18 & 0 & 0 & 0.76 \\ 0.78 & 0 & 0.81 & 0 & 0.45 & 0.13 & 0 & 0.21 & 0.75 & 0 \\ 0.22 & 0 & 0.19 & 0 & 0.55 & 0.87 & 0 & 0.79 & 0.25 & 0 \\ 0 & 0 & 0.81 & 0.52 & 0.45 & 0 & 0.82 & 0 & 0.75 & 0 \\ 0 & 0 & 0.19 & 0.48 & 0.55 & 0 & 0.18 & 0 & 0.25 & 0.76 \\ \hline 0 & 0.84 & 0 & 0.52 & 0.45 & 0.13 & 0 & 0.21 & 0 & 0.24 \\ 0 & 0.16 & 0 & 0.48 & 0.55 & 0.87 & 0 & 0.79 & 0 & 0.76 \\ \hline 0.78 & 0.84 & 0 & 0.52 & 0 & 0 & 0.82 & 0.21 & 0.75 & 0 \\ 0.22 & 0.16 & 0 & 0.48 & 0 & 0 & 0.18 & 0.79 & 0.25 & 0 \end{bmatrix}$$

After the 1st Horizontal-Vertical iteration, we have

	0.551914	0.542753	0.546890	0	0	0.460714	0.545425	0	0	0.444092
	0.448086	0.457247	0.453110	0	0	0.539286	0.454575	0	0	0.555908
•	0.493347	0	0.493991	0	0.537255	0.505034	0	0.506423	0.493347	0
	0.506653	0	0.506009	0	0.462745	0.494966	0	0.493577	0.507451	0
$\mathbf{R} = \mathbf{R}$	0	0	0.500333	0.505158	0.497937	0	0.500322	0	0.500413	0.499603
	0	0	0.499667	0.494842	0.502063	0	0.499678	0	0.499587	0.500397
	0	0.500446	0	0.507588	0.496965	0.499590	0	0.499477	0	0.499416
	0	0.499554	0	0.492412	0.503035	0.500410	0	0.500523	0	0.500584
	0.497476	0.497921	0	0.464662	0	0	0.497791	0.502437	0.497173	0
	0.502524	0.502079	0	0.535338	0	0	0.502209	0.497563	0.502827	0

	0.773636	0.839121	0.806481	; 0	0	0.132106	0.818884	0	0	0.239285
	0.226364	0.160879	0.193519	0	0	0.867894	0.181116	0	0	0.760715
	0.812140	0	0.837461	0	0.444958	0.113039	0	0.211273	0.748185	0
	0.187860	0	0.162539	0	0.555042	0.886961	0	0.788727	0.251815	0
•	0	0	0.833978	0.492203	0.484126	0	0.844187	0	0.742212	0.201076
$\mathbf{Q} =$	0	0	0.166022	0.507797	0.515874	0	0.155813	0	0.257788	0.798924
	0	0.860727	0	0.489773	0.485097	0.115241	0	0.215940	0	0.201196
	0	0.139273	0	0.5110227	0.514903	0.884759	0	0.784060	0	0.798804
	0.809608	0.861934	0	0.532711	0	0	0.845514	0.213942	0.744684	0
	0.190392	0.138066	0	0.467289	0	0	0.154486	0.786058	0.255316	0

Hence, the *a posteriori* probability matrix \mathbf{Q}' is :

$$\mathbf{Q'} = \begin{bmatrix} 0.808046 & 0.860941 & 0.834162 & 0.497361 & 0.482065 & 0.115074 & 0.844356 & 0.215586 & 0.742528 & 0.200821 \\ 0.191954 & 0.139059 & 0.165838 & 0.502639 & 0.517935 & 0.884926 & 0.155644 & 0.784414 & 0.257472 & 0.799179 \end{bmatrix}$$

The estimated codeword is $\hat{c} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$. It does not satisfy $\hat{c} \cdot \mathbf{H}^{\mathrm{T}} = 0$ and the iteration continues...

After the 3rd Horizontal-Vertical iteration, we have

	0.549960	0.540086	0.544369	0	0	0.463092	0.542650	0	0	0.447890
	0.450040	0.459914	0.455631	0	0	0.536908	0.457350	0	0	0.552110
	0.493114	0	0.493650	0	0.545393	0.505532	0	0.507453	0.491301	0
	0.506886	0	0.506350	0	0.454607	0.494468	0	0.492547	0.508699	0
$\mathbf{R} =$	0	0	0.499989	0.500176	0.502649	0	0.499989	0	0.499985	0.500012
	0	0	0.500011	0.499824	0.497351	0	0.500011	0	0.500015	0.499988
	0	0.499975	0	0.500415	0.503915	0.500023	$\left.\right $ 0	0.500032	0	0.500030
	0	0.500025	0	0.499585	0.496085	0.49977	0	0.499968	0	0.499970
	0.496595	0.497094	0	0.457904	0	0	0.496955	0.503693	0.495668	0
	0.503405	0.502906	0	0.542096	0	0	0.503045	0.496307	0.504332	

	0.772854	0.838418	0.806053	0	0	0.132534	0.818189	0	0	0.240031
	0.227146	0.161582	0.193947	0	0	0.867466	0.181811	0	0	0.759969
	0.810391	0	0.835883	0	0.456507	0.114117	0	0.212482	0.746725	0
	0.189609	0	0.164117	0	0.543493	0.885823	0 }	0.787518	0.253275	0
O =	0	0	0.832375	0.478244	0.499266	0	0.842265	0	0.740099	0.230955
Q –	0	0	0.167625	0.521756	0.500734	0	0.157735	0	0.259901	0.796045
	0	0.859034	0	0.478005	0.498000	0.116425	0	0.217493	0	0.203943
	0	0.140996	0	0.521995	0.502000	0.83575	0	0.782507	0	0.796057
	0.808242	0.860424	0	0.520590	0	0	0.843871	0.215010	0.743407	0
	0.191758	0.139576	0	0.479410	0	0	0.156129	0.784990	0.256593	0

The *a posteriori* probability matrix \mathbf{Q}' becomes :

$$\mathbf{Q'} = \begin{bmatrix} 0.806122 & 0.859023 & 0.832369 & 0.478419 & 0.501915 & 0.116434 & 0.842260 & 0.217514 & 0.740088 & 0.203963 \\ 0.193878 & 0.140977 & 0.167631 & 0.521581 & 0.498085 & 0.883566 & 0.157740 & 0.782486 & 0.259913 & 0.796037 \end{bmatrix}$$

The estimated codeword is $\hat{c} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$. It satisfies $\hat{c} \cdot \mathbf{H}^{\mathrm{T}} = 0$ and the decoding terminates.

- AWGN channel, BPSK modulation
- Design code rate: 0.5

- The BP decoding algorithm can be simplified in logrithm domain.
- Regarding bit c_n , its probabilities $Pr(c_n = 0)$ and $Pr(c_n = 1)$ can be unified in log likelihood ratio (LLR) as

$$LLR(c_n) = \ln \frac{\Pr(c_n = 0)}{\Pr(c_n = 1)}.$$

Inversely,

$$Pr(c_n = 0) = \frac{1}{1 + e^{-LLR(c_n)}}, Pr(c_n = 1) = \frac{1}{1 + e^{LLR(c_n)}}.$$

In the Horizontal update

$$r_{mn}(\theta) = \sum_{\{c_{n'}: \Sigma \theta_{n'} = \theta\}} \prod_{n' \in N_m \setminus n} q_{mn'}(\theta).$$

If $c_n = \theta = 1$, we need to consider the permutation of $\{c_{n'}\}$ in which there are **odd** number (#) of 1s, so that $z_m = c_n + \Sigma c_{n'} = 0$. Otherwise, if $c_n = \theta = 0$, we need to consider the permutation of $\{c_{n'}\}$ in which there are **even** (#) of 1s.

Given a binary sequence of length N in which each bit is Lemma independent, the probability of bit n being 1 is p_n . Then,

Pr[there are **even** # of 1s] =
$$\frac{1}{2} + \frac{1}{2} \prod_{n=1}^{N} (1 - 2p_n)$$
,
Pr[there are **odd** # of 1s] = $\frac{1}{2} - \frac{1}{2} \prod_{n=1}^{N} (1 - 2p_n)$.

Applying the above lemma, the BP decoding becomes Horizontal update:

$$r_{mn}(0) = \frac{1}{2} + \frac{1}{2} \prod_{n' \in N_m \setminus n} \left(1 - 2q_{mn'}(1) \right),$$

$$r_{mn}(1) = \frac{1}{2} - \frac{1}{2} \prod_{n' \in N_m \setminus n} \left(1 - 2q_{mn'}(1) \right).$$
(8)

$$r_{mn}(1) = \frac{1}{2} - \frac{1}{2} \prod_{n' \in N_m \setminus n} \left(1 - 2q_{mn'}(1) \right).$$

Vertical update:

$$q_{mn}(0) = \alpha_{mn} \cdot f_n(0) \cdot \Pi_{m' \in M_n \setminus m} r_{m'n}(0),$$

$$q_{mn}(1) = \alpha_{mn} \cdot f_n(1) \cdot \Pi_{m' \in M_n \setminus m} r_{m'n}(1).$$
(9)

$$q_{mn}(1) = \alpha_{mn} \cdot f_n(1) \cdot \prod_{m' \in M_n \setminus m} r_{m'n}(1).$$

(10)

(8)

Let us define the following LLR values

$$l_n = \ln \frac{f(0)}{f(1)}$$
, $u_{mn} = \ln \frac{q_{mn}(0)}{q_{mn}(1)}$, $v_{mn} = \ln \frac{r_{mn}(0)}{r_{mn}(1)}$, $l_{n,p} = \ln \frac{q_n(0)}{q_n(1)}$.

- Equip with $\tanh \frac{x}{2} = \frac{e^x 1}{e^x + 1}$, $2 \tanh^{-1} x = \ln \frac{1 + x}{1 x}$.
- Horizontal update: $u_{mn} \rightarrow v_{mn}$

$$\tanh \frac{u_{mn}}{2} = \frac{e^{u_{mn}} - 1}{e^{u_{mn}} + 1} = \frac{\frac{q_{mn}(0)}{q_{mn}(1)} - 1}{\frac{q_{mn}(0)}{q_{mn}(1)} + 1} = \frac{q_{mn}(0) - q_{mn}(1)}{q_{mn}(0) + q_{mn}(1)} = 1 - 2q_{mn}(1).$$

(7) and (8) become

$$r_{mn}(0) = \frac{1}{2} + \frac{1}{2} \prod_{n' \in N_m \setminus n} \tanh \frac{u_{mn'}}{2},\tag{11}$$

$$r_{mn}(1) = \frac{1}{2} - \frac{1}{2} \prod_{n' \in N_m \setminus n} \tanh \frac{u_{mn'}}{2}.$$
 (12)

$$v_{mn} = \ln \frac{(11)}{(12)} = 2 \tanh^{-1} \left(\prod_{n' \in N_m \setminus n} \tanh \frac{u_{mn'}}{2} \right).$$

- Vertical update: $v_{mn} \rightarrow u_{mn}$

$$u_{mn} = \ln \frac{(9)}{(10)} = \ln \frac{f(0)}{f(1)} + \sum_{m' \in M_n \setminus m} \ln \frac{r_{m'n}(0)}{r_{m'n}(1)}$$
$$u_{mn} = l_n + \sum_{m' \in M_n \setminus m} v_{m'n}$$

Aposteriori LLR

$$l_{n,p} = \ln \frac{q_n(0)}{q_n(1)} = l_n + \sum_{m \in M_n} v_{mn}$$

- Decision on c_n

If
$$l_{n,p} \ge 0$$
, $\hat{c}_n = 0$; If $l_{n,p} < 0$, $\hat{c}_n = 1$.