
Chapter 4 Turbo Codes

• 4.1 Introduction of Turbo Codes

• 4.2 Encoding of Turbo Codes

• 4.3 Decoding of Turbo Codes (Turbo Decoding)

• 4.4 Performance Analysis

§4.1 Introduction of Turbo Codes

- Invented by C. Berrou, A. Glavieux and P. Thitimajshima in 1993 [1].

- Integrate a couple of conv. codes in a parallel encoding structure. The two conv.

codes are called the constituent codes of a turbo code.

- Exploit the interplay between the decoders of the two constituent codes in a soft

information exchange decoding mechanism.

- Such a decoding mechanism is called turbo decoding, turbo decoding is NOT

limited to decode turbo codes, but to any concatenated (serial or parallel) code.

- Shannon capacity can be approached with the existence of error floor.

[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding and

decoding: turbo codes, ” Proc. ICC’ 93, pp. 1064-1047, Geneva, May 1993.

§4.1 Introduction of Turbo Codes

Why do we need code concatenation?

In BCJR decoding of a conv. code,

00

01

10

11

00

01

10

11

00

11

11
00

10
01

01
10

IN: 0

IN: 1

With a single conv. code, we do not have any information of information bit 𝑚𝑡 and the a

priori prob. 𝑃𝑎 𝑚𝑡 = 0 = 𝑃𝑎 𝑚𝑡 = 1 = 0.5. With a couple of conv. codes that share the

same information bits (but in different permutations), one decoder can gain a priori prob. of

information bits 𝑚𝑡 from the output of the other decoder, and vice versa. As a result, BCJR

decoding of each constituent code can be improved.

𝑚𝑡/𝑐𝑡
1𝑐𝑡

2

ΓΩ→Ω′ = 𝑃𝑎(𝑚𝑡) ∙ 𝑃𝑐ℎ(𝑐𝑡
1) ∙ 𝑃𝑐ℎ(𝑐𝑡

2)

Ω′Ω

channel observations

a priori prob.

§4.1 Introduction of Turbo Codes

SISO Decod.

E.g.,

BCJR Decod.

𝑃𝑝, 𝑃𝑒

Extrinsic prob.: 𝑃𝑒 =
𝑃𝑝

𝑃𝑎
, extra knowledge

(excluding the a priori prob.) delivered by

the SISO decoder.

A posteriori prob.: knowledge

about the information bits after

the decoding. It is used for

estimation.

𝑃𝑎

A priori prob.: knowledge about

the information bits before the

decoding. It is also called the

intrinsic prob.

§4.2 Encoding of Turbo Codes

Constituent codes: Recursive Systematic Conv. (RSC) codes. Normally, the two

constituent codes are the same.

Interleaver (Π): Generate a different information sequence (a permuted sequence) as

the input to the RSC encoder (2). Normally, it is a random interleaver.

Puncture: Control the rate of the turbo code.

Π

RSC

Enc. (1)

RSC

Enc. (2)

Puncture

𝑚𝑡

𝑚𝑡

𝑝𝑡
(1)

𝑝𝑡
(2)

§4.2 Encoding of Turbo Codes

Π

RSC

Enc. (1)

RSC

Enc. (2)

Puncture

𝑚𝑡

𝑚𝑡

𝑝𝑡
(1)

𝑝𝑡
(2)

- Given the binary message sequence as 𝑚 = [𝑚1, 𝑚2, ⋯ 𝑚𝑘], output of the turbo encoder

should be

 𝑐 = [𝑚1 𝑝1
1
𝑝1

2
𝑚2 𝑝2

1
𝑝2

2
⋯ 𝑚𝑡 𝑝𝑡

1
𝑝𝑡

2
⋯ 𝑚𝑘 𝑝𝑘

1
𝑝𝑘
(2)
].

- Rate of the turbo code is 1/3. To increase the rate to ½, we can use puncturing whose

pattern can be represented by
1 0
0 1

puncture 𝑝𝑡
(2)

when 𝑡 is odd puncture 𝑝𝑡
(1)

when 𝑡 is even.

- After puncturing, output of the turbo encoder should be

 𝑐 = [𝑚1 𝑝1
1

𝑚2 𝑝2
2

⋯ 𝑚𝑘 𝑝𝑘
1
(𝑚𝑘 𝑝𝑘

(2)
)]

when 𝑘 is odd when 𝑘 is even.

§4.2 Encoding of Turbo Codes

Example 4.1 Given the turbo encoder shown below with constituent code of conv.

(1, 1 1+𝑥2). The puncturing pattern is
1 0
0 1

. The interleaving pattern is {8, 3, 7, 6,

9, 1, 10, 5, 2, 4}. Determine the turbo codeword of message vector 𝑚 = [1 0 0 1 0 1

1 0 0 0].

Π

𝑝𝑡
(1)

𝑝𝑡
(2)

𝑚𝑡

Puncture

§4.2 Encoding of Turbo Codes

00

01

10

11

00

01

10

11

0/0

1/1

1/0

0/1

0/0
1/1

1/0
0/1

IN/PARITY

Trellis of the code

Output of the 1st constituent code is:

 𝑝(1) = [1 0 1 1 1 0 0 0 0 0]

After interleaving, the permuted message

vector becomes

 𝑚′ = [0 0 1 1 0 1 0 0 0 1]

Output of the 2nd constituent code is:

 𝑝(2) = [0 0 1 1 1 0 1 0 1 1]

Before puncturing, the turbo codeword is

 𝑐 = [110 000 011 111 011 100 101 000 001 001]

After puncturing, the turbo codeword is

 𝑐 = [11 00 01 11 01 10 10 00 00 01]

The original message vector

 𝑚 = [1 0 0 1 0 1 1 0 0 0]

§4.3 Decoding of Turbo Codes

- Turbo codeword 𝑐 = [𝑚1 𝑝1
1
𝑝1

2
, 𝑚2 𝑝2

1
𝑝2

2
, ⋯ , 𝑚𝑘 𝑝𝑘

1
𝑝𝑘
(2)
].

- Assume the turbo codeword is transmitted using BPSK.

- Received symbol vector

 𝑟 = [𝑟1
0
𝑟1
1
𝑟1
2
, 𝑟2

0
𝑟2
1
𝑟2
2
, ⋯ , 𝑟𝑘

0
𝑟𝑘
1
𝑟𝑘
(2)
].

- Interleaved message vector

 𝑚′ = Π 𝑚 = [𝑚1
′ , 𝑚2

′ , ⋯ , 𝑚𝑘
′].

- Interleaved (information) symbol vector

𝑟1
0 ′
, 𝑟2

0 ′
, ⋯ , 𝑟𝑘

0 ′
= Π([𝑟1

0
, 𝑟2

0
, ⋯ , 𝑟𝑘

(0)
]).

- Parameterization

§4.3 Decoding of Turbo Codes

Turbo decoding structure

Π Π Π−1

BCJR (1)

BCJR (2)
Π−1

- In BCJR (1), trellis transition probability is determined by

In BCJR (2), trellis transition probability is determined by

ΓΩ→Ω′ = 𝑃𝑎(𝑚𝑡)𝑃𝑐ℎ(𝑚𝑡)𝑃𝑐ℎ(𝑝𝑡
(1)
).

ΓΩ→Ω′ = 𝑃𝑎(𝑚𝑡
′)𝑃𝑐ℎ(𝑚𝑡

′)𝑃𝑐ℎ(𝑝𝑡
(2)
).

 𝑟
𝑟1
(0)
𝑟1
(1)

⋯𝑟𝑘
(0)
𝑟𝑘
(1)

𝑃𝑐ℎ 𝑚𝑡 , 𝑃𝑐ℎ(𝑝𝑡
(1)
) 𝑃𝑒(𝑚𝑡)

𝑃𝑎(𝑚𝑡)

𝑃𝑎(𝑚𝑡
′) 𝑃𝑒(𝑚𝑡

′)

𝑃𝑝(𝑚𝑡
′) 𝑃𝑝(𝑚𝑡)𝑃𝑐ℎ(𝑚𝑡

′), 𝑃𝑐ℎ(𝑝𝑡
(2)
)𝑟1

0 ′
𝑟1
(2)
, ⋯ 𝑟𝑘

0 ′
𝑟𝑘
(2)

§4.3 Decoding of Turbo Codes

Π Π Π−1

BCJR (1)

BCJR (2)
Π−1

 𝑟
𝑟1
(0)
𝑟1
(1)

⋯𝑟𝑘
(0)
𝑟𝑘
(1)

𝑃𝑐ℎ 𝑚𝑡 , 𝑃𝑐ℎ(𝑝𝑡
(1)
) 𝑃𝑒(𝑚𝑡)

𝑃𝑎(𝑚𝑡)

𝑃𝑎(𝑚𝑡
′) 𝑃𝑒(𝑚𝑡

′)

𝑃𝑝(𝑚𝑡
′) 𝑃𝑝(𝑚𝑡)𝑃𝑐ℎ(𝑚𝑡

′), 𝑃𝑐ℎ(𝑝𝑡
(2)
)𝑟1

0 ′
𝑟1
(2)
, ⋯ 𝑟𝑘

0 ′
𝑟𝑘
(2)

Turbo decoding structure

- At the beginning of iterations, knowledge of information bits 𝑚𝑡 is not available, and

𝑃𝑎(𝑚𝑡) are initialized as

- Once BCJR (1) delivers 𝑃𝑒(𝑚𝑡), knowledge of interleaved information bits 𝑚𝑡
′ will be

gained by mapping

and BCJR (2) starts its decoding with 𝑃𝑎(𝑚𝑡
′), 𝑃𝑐ℎ(𝑚𝑡

′) and 𝑃𝑐ℎ(𝑝𝑡
(2)
).

𝑃𝑎 𝑚𝑡 = 0 = 𝑃𝑎 𝑚𝑡 = 1 = ½.

Π(𝑃𝑒(𝑚𝑡)) → 𝑃𝑎(𝑚𝑡
′),

§4.3 Decoding of Turbo Codes

Π Π Π−1

BCJR (1)

BCJR (2)
Π−1

 𝑟
𝑟1
(0)
𝑟1
(1)

⋯𝑟𝑘
(0)
𝑟𝑘
(1)

𝑃𝑐ℎ 𝑚𝑡 , 𝑃𝑐ℎ(𝑝𝑡
(1)
) 𝑃𝑒(𝑚𝑡)

𝑃𝑎(𝑚𝑡)

𝑃𝑎(𝑚𝑡
′) 𝑃𝑒(𝑚𝑡

′)

𝑃𝑝(𝑚𝑡
′) 𝑃𝑝(𝑚𝑡)𝑃𝑐ℎ(𝑚𝑡

′), 𝑃𝑐ℎ(𝑝𝑡
(2)
)𝑟1

0 ′
𝑟1
(2)
, ⋯ 𝑟𝑘

0 ′
𝑟𝑘
(2)

Turbo decoding structure

- Once BCJR (2) delivers 𝑃𝑒(𝑚𝑡
′), knowledge of information bits 𝑚𝑡 will be gained by mapping

and BCJR (1) performs another round of decoding with 𝑃𝑎(𝑚𝑡), 𝑃𝑐ℎ(𝑚𝑡) and 𝑃𝑐ℎ(𝑝𝑡
(1)
).

Π−1(𝑃𝑒(𝑚𝑡
′)) → 𝑃𝑎(𝑚𝑡),

- After a sufficient number of iterations, decision will be made based on the a posteriori prob.

𝑃𝑝(𝑚𝑡) that is the deinterleaved version of output of BCJR (2), 𝑃𝑝(𝑚𝑡
′).

- If parity bits 𝑝𝑡
(1)

(or 𝑝𝑡
(2)

) have been punctured, the channel observations become

𝑃𝑐ℎ 𝑝𝑡
1
= 0 = 𝑃𝑐ℎ 𝑝𝑡

1
= 1 = ½, (or 𝑃𝑐ℎ 𝑝𝑡

2
= 0 = 𝑃𝑐ℎ 𝑝𝑡

2
= 1 = ½).

And all the channel observations remain unchanged during the whole iterative process.

§4.3 Decoding of Turbo Codes

Example 4.2. Message vector 𝑚 = [1 0 0 1 0 1 1 0 0 0]

Transmitted codeword 𝑐 = [11 00 01 11 01 10 10 00 00 01]

Received symbol 𝑟 = [1.66, 2.49, -2.35, -1.39, 0.22, 1.27, -0.41, 0.30,

-2.00, 1.16, 1.70, -1.69, 0.90, -0.38, -3.28, -0.82, 0.12, -1.30, -3.31, 2.28].

After iteration 1:

𝑃𝑒(𝑚𝑡 = 0)
𝑃𝑒(𝑚𝑡 = 1)
𝑃𝑒(𝑚𝑡

′ = 0)
𝑃𝑒(𝑚𝑡

′ = 1)
𝑃𝑝(𝑚𝑡 = 0)

𝑃𝑝(𝑚𝑡 = 1)

0.01

0.99

0.50

0.50

0.00

1.00

0.32

0.68

0.82

0.18

0.27

0.73

0.99

0.01

0.50

0.50

1.00

0.00

0.04

0.96

0.08

0.92

0.49

0.51

0.84

0.16

0.50

0.50

1.00

0.00

0.69

0.31

0.67

0.33

0.31

0.69

0.37

0.63

0.50

0.50

0.28

0.72

0.32

0.68

0.23

0.77

0.02

0.98

0.92

0.08

0.50

0.50

1.00

0.00

0.32

0.68

0.03

0.97

0.07

0.93

§4.3 Decoding of Turbo Codes

𝑃𝑒(𝑚𝑡 = 0)
𝑃𝑒(𝑚𝑡 = 1)
𝑃𝑒(𝑚𝑡

′ = 0)
𝑃𝑒(𝑚𝑡

′ = 1)
𝑃𝑝(𝑚𝑡 = 0)

𝑃𝑝(𝑚𝑡 = 1)

0.00

1.00

0.50

0.50

0.00

1.00

0.93

0.07

0.99

0.01

0.92

0.08

0.99

0.01

0.50

0.50

1.00

0.00

0.01

0.99

0.04

0.96

0.11

0.89

0.91

0.09

0.50

0.50

1.00

0.00

0.07

0.93

0.14

0.86

0.01

0.99

0.37

0.63

0.50

0.50

0.28

0.72

0.93

0.07

0.34

0.66

0.32

0.68

0.93

0.07

0.50

0.50

1.00

0.00

0.93

0.07

0.01

0.99

0.68

0.32

𝑃𝑒(𝑚𝑡 = 0)
𝑃𝑒(𝑚𝑡 = 1)
𝑃𝑒(𝑚𝑡

′ = 0)
𝑃𝑒(𝑚𝑡

′ = 1)
𝑃𝑝(𝑚𝑡 = 0)

𝑃𝑝(𝑚𝑡 = 1)

0.00

1.00

0.50

0.50

0.00

1.00

0.97

0.03

0.99

0.01

0.96

0.04

0.99

0.01

0.50

0.50

1.00

0.00

0.01

0.99

0.03

0.97

0.10

0.90

0.94

0.06

0.50

0.50

1.00

0.00

0.04

0.96

0.09

0.91

0.00

1.00

0.37

0.63

0.50

0.50

0.28

0.72

0.96

0.04

0.37

0.63

0.49

0.51

0.93

0.07

0.50

0.50

1.00

0.00

0.96

0.04

0.01

0.99

0.82

0.18

After iteration 2:

After iteration 3:

§4.3 Decoding of Turbo Codes

𝑃𝑒(𝑚𝑡 = 0)
𝑃𝑒(𝑚𝑡 = 1)
𝑃𝑒(𝑚𝑡

′ = 0)
𝑃𝑒(𝑚𝑡

′ = 1)
𝑃𝑝(𝑚𝑡 = 0)

𝑃𝑝(𝑚𝑡 = 1)

0.00

1.00

0.50

0.50

0.00

1.00

0.97

0.03

0.99

0.01

0.97

0.03

0.99

0.01

0.50

0.50

1.00

0.00

0.01

0.99

0.03

0.97

0.10

0.90

0.94

0.06

0.50

0.50

1.00

0.00

0.04

0.96

0.09

0.91

0.00

1.00

0.37

0.63

0.50

0.50

0.28

0.72

0.97

0.03

0.37

0.63

0.51

0.49

0.93

0.07

0.50

0.50

1.00

0.00

0.97

0.03

0.01

0.99

0.82

0.18

After iteration 4:

§4.3 Decoding of Turbo Codes

Remark: Turbo decoding efficiency can be improved by the so called

log-MAP algorithm or the max-log-MAP algorithm [2]. Both of the

algorithms deal with log-likelihood ratios rather than probabilities. The

max-log-MAP algorithm has a computational complexity of not more

than three times of Viterbi algorithm, but suffers a slight performance

loss compared to BCJR and log-MAP algorithms.

[2] T. K. Moon, Error correction coding-Mathematical Methods and Algorithms., John Wiley

& Sons Press, 2005.

§4.4 Performance Analysis

BER performance of rate half turbo code with constituent code of (1, 5/7) RSC over AWGN

channel using BPSK.

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7 8 9 10

B
E

R

Eb/N0 (dB)

(1, 5/7) RSC

1 iteration

2 iteration

3 iteration

4 iteration

5 iteration

10 iteration

20 iteration

SNR threshold

§4.4 Performance Analysis

Q: Why there is an error floor?

- The bit error rate (BER) (denoted as 𝑃𝑏) of a conv. code (and turbo code) is

determined by

𝑃𝑏 ≤
𝑖=1

2𝑘 𝑤𝑖

𝑘
𝑄

2𝑑𝑖 ∙ 𝑅 ∙ 𝐸𝑏
𝑁0

.

 Let 𝑚𝑖 denote a message vector and 𝑐𝑖 denote its corresponding codeword,

𝑤𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑚𝑖) and 𝑑𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑖 .

 𝑘 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑖) and there are 2𝑘 codewords in the code book.

 𝑅 is the rate of the code.

𝐸𝑏

𝑁0
— signal-to-noise ratio (SNR).

Q function as 𝑄(𝑥) ≜
1

2𝜋
 𝑥
∞
𝑒−

𝑢2

2 𝑑𝑢 .

§4.4 Performance Analysis

- Since 𝑑𝑖 = 𝑑𝑓𝑟𝑒𝑒, 𝑑𝑓𝑟𝑒𝑒 + 1, ⋯ , 𝑘 𝑅, by grouping terms with the same 𝑑𝑖, the

above inequality can be written as:

 𝑤𝑑 — weight of message vectors that correspond to codeword of weight 𝑑.

𝑃𝑏 ≤
𝑑=𝑑𝑓𝑟𝑒𝑒

 𝑘 𝑅 𝑊𝑑

𝑘
𝑄

2𝑑 ∙ 𝑅 ∙ 𝐸𝑏
𝑁0

=
𝑑=𝑑𝑓𝑟𝑒𝑒

 𝑘 𝑅 𝑤𝑑𝑁𝑑
𝑘

𝑄
2𝑑 ∙ 𝑅 ∙ 𝐸𝑏

𝑁0
.

 𝑁𝑑 — Number of codewords of weight 𝑑.

 𝑊𝑑 — Total weight of message vectors that correspond to codeword of

weight 𝑑.

§4.4 Performance Analysis

- When the SNR (
𝐸𝑏

𝑁0
) increases, the asymptotic behavior of 𝑃𝑏 is dominated by the

first term in the summation as

𝑃𝑏 ≅
𝑁𝑑𝑓𝑟𝑒𝑒 𝑤𝑑𝑓𝑟𝑒𝑒

𝑘
𝑄

2𝑑𝑓𝑟𝑒𝑒 ∙ 𝑅 ∙ 𝐸𝑏

𝑁0
.

- In the log𝑃𝑏 vs. log
𝐸𝑏

𝑁0
graph, 𝑑𝑓𝑟𝑒𝑒 determines the slope of the BER vs. SNR (dB)

curve.

A: The error floor at high SNR is due to a small 𝒅𝒇𝒓𝒆𝒆, or alternatively

the presence of low weight codewords.

§4.4 Performance Analysis

Motivation of having an interleaver between the two encoders: Try to avoid the

low weight conv. codewords and subsequently the low weight turbo codeword being

produced.

Example 4.3 Following the encoder structure of Example 4.1, if the message

vector 𝑚 = [0 0 0 0 1], the output of the RSC (1) will be

 𝑐1 = [00 00 00 00 11].

Without interleaving, the output of RSC (2) will be the same as RSC (1) as

 𝑐2 = 𝑐1. And the turbo codeword is

 𝑐 = [000 000 000 000 111].

With interleaving, 𝑚′ = [1 0 0 0 0], the output of RSC (2) will now be

 𝑐2 = [11 00 01 00 01].

And the turbo codeword becomes

 𝑐 = [001 000 001 000 111].

