Chapter 4 Turbo Codes

* 4.1 Introduction of Turbo Codes

» 4.2 Encoding of Turbo Codes

» 4.3 Decoding of Turbo Codes (Turbo Decoding)
« 4.4 Performance Analysis

§ 4.1 Introduction of Turbo Codes

- Invented by C. Berrou, A. Glavieux and P. Thitimajshima in 1993 [1].

- Integrate a couple of conv. codes in a parallel encoding structure. The two conv.
codes are called the constituent codes of a turbo code.

- Exploit the interplay between the decoders of the two constituent codes in a soft
information exchange decoding mechanism.

- Such a decoding mechanism is called turbo decoding, turbo decoding is NOT
limited to decode turbo codes, but to any concatenated (serial or parallel) code.

- Shannon capacity can be approached with the existence of error floor.

[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding and
decoding: turbo codes, ” Proc. ICC’ 93, pp. 1064-1047, Geneva, May 1993.

§ 4.1 Introduction of Turbo Codes

Why do we need code concatenation?
In BCJR decoding of a conv. code,

9 Q'
00 \OO 00

)\i/ a priori prob.
\1 mb(cicf %

=|Py(m¢)|: Pch(cg)) Pch(CtZ)

f

channel observations

With a single conv. code, we do not have any information of information bit m; and the a
priori prob. P,(m; = 0) = P,(m; = 1) = 0.5. With a couple of conv. codes that share the
same information bits (but in different permutations), one decoder can gain a priori prob. of

information bits m; from the output of the other decoder, and vice versa. As a result, BCJR
decoding of each constituent code can be improved.

§ 4.1 Introduction of Turbo Codes

A posteriori prob.: knowledge
about the information bits after
the decoding. It is used for

J estimation.

P, SISO Decod. | Py, P.<—
E.g., >
BCJR Decod.

A priori prob.: knowledge about
the information bits before the Extrinsic prob.: P, = Ii—p, extra knowledge
decoding. It is also called the N
intrinsic prob.

(excluding the a priori prob.) delivered by
the SISO decoder.

§ 4.2 Encoding of Turbo Codes

Constituent codes: Recursive Systematic Conv. (RSC) codes. Normally, the two
constituent codes are the same.

Interleaver (IT): Generate a different information sequence (a permuted sequence) as
the input to the RSC encoder (2). Normally, it is a random interleaver.

Puncture: Control the rate of the turbo code.

mt RSC pt
Enc. (1)

RSC p?
Enc. (2) |

|
|
|
|
|
Puncture |
|
|
|
|
|
|

§ 4.2 Encoding of Turbo Codes

© e
My RSC 28R i
Enc. (1) ,' |
| Puncture |
I1 | :
p®@ | |
RSC t : |
Enc. (2) | I
Lo __
- Given the binary message sequence as m = [my, m,, -+ my], output of the turbo encoder
should be
2
¢ = [myp” Py mypy” PP me Y o muen” b1

- Rate of the turbo code is 1/3. To increase the rate to ¥2, we can use puncturing whose
pattern can be represented by

puncture pgz) when t is odd j & puncture pgl) when t is even.

- After puncturing, output of the turbo encoder should be

¢ = [my pP my p$? - my p$M (mye p$H)]

when k isodd — 4 A when k is even.

§ 4.2 Encoding of Turbo Codes

Example 4.1 Given the turbo encoder shown below with constituent code of conv.
(1, */,,,2)- The puncturing pattern is [(1) (1)] The interleaving patternis {8, 3, 7, 6,

9,1, 10, 5, 2, 4}. Determine the turbo codeword of message vector m=[100101
1000].

mg

(1)

I Puncture

§ 4.2 Encoding of Turbo Codes

The original message vector IN/PARITY
M=[1001011000]
Output of the 1%t constituent code is:

pM=[1011100000]

After interleaving, the permuted message
vector becomes

m =[0011010001]
Output of the 2nd constituent code is:

p? =[0011101011] Trellis of the code
Before puncturing, the turbo codeword is

¢ =[110000011111011 100101 000 001 001]
After puncturing, the turbo codeword is

¢c=[11000111011010000001]

§ 4.3 Decoding of Turbo Codes

- Parameterization
(1) . (2) (1) ..(2)

(1) @

- Turbocodeword ¢ = [myp; " p;", map, Dy,

)mpk

- Assume the turbo codeword is transmitted using BPSK.

- Received symbol vector

r 2 T
- Interleaved message vector

m' =1(m) = [my, my, -, my].
- Interleaved (information) symbol vector

[(0), (0) Tk(O)] ([r; (0) 2(0)’

P =[O 0@ 0,0,.0) 0, 0.0

0
. Tk()])_

§ 4.3 Decoding of Turbo Codes

Turbo decoding structure

0) (1 0) (1 1
rl()rl()"'Tk()rk() Pch(mt)ﬂpch(pt())

Pe (mt)

r
P (my) BCJR (1)
I1 I nm1
K Pumi) P.(m}) \
| | BCJR (2) —,
O @y O D Py (), P (p) Py(m}) Py(m)

- In BCJR (1), trellis transition probability is determined by
Toog = Pa(me)Pen(me)Pen (),

In BCJR (2), trellis transition probability is determined by

! I} 2
Fooq! = Pa(mi)Poy (M) P (0$?).

§ 4.3 Decoding of Turbo Codes

Turbo decoding structure

0 1 0 1 1
SONCIINOMS)y

T Pep(my), Py (p;

'F Pe(mt)
pomoy —BCIR (1)
I I n
K Pa(m}) P.(m}) \
| | BCJR (2) —,
O3 @ n @D Py (m), e (p) Py (m}) Py(m)

- At the beginning of iterations, knowledge of information bits m, is not available, and
P,(m;) are initialized as

Po(my =0) = Pp(m; = 1) =%

- Once BCJR (1) delivers P,(m;), knowledge of interleaved information bits m; will be
gained by mapping
[I(P, (m¢)) = Pa(my),

and BCJR (2) starts its decoding with P,(my), P.,(m;) and pch(p@).

§ 4.3 Decoding of Turbo Codes

Turbo decoding structure

0)_(1 0) (1 1
rOr® 5 OrD p), P (™)

'F Pe(mt)
pomoy —BCIR (1)
I I n
K Pa(m}) P.(m}) \
| | BCJR (2) —,
O3 @ n @D Py (m), e (p) Py (m}) Py(m)

- Once BCJR (2) delivers P,(my), knowledge of information bits m, will be gained by mapping
N~ (P(my)) > Pa(my), (1)
and BCJR (1) performs another round of decoding with P, (m;), Pcp(m;) and P.p(p;).
- After a sufficient number of iterations, decision will be made based on the a posteriori prob.

P,(m;) that is the deinterleaved version of output of BCJR (2), P, (m).
- If parity bits pfl) (or pt(z)) have been punctured, the channel observations become

Pen (P = 0) = P (p{Y = 1) =%, (0r Pen (pP = 0) = Py (p? = 1) =),
And all the channel observations remain unchanged during the whole iterative process.

§ 4.3 Decoding of Turbo Codes

Example 4.2. Message vectorm =[100101100 0]
Transmitted codeword ¢ =[110001 1101 10 1000 00 01]
Received symbol + = [1.66, 2.49, -2.35, -1.39, 0.22, 1.27, -0.41, 0.30,
-2.00, 1.16, 1.70, -1.69, 0.90, -0.38, -3.28, -0.82, 0.12, -1.30, -3.31, 2.28].

After iteration 1:

P.(m; = 0) 0.01/0.32/0.99|0.04|0.84/0.69|0.37|0.32/0.92/0.32
P,(m; = 1) |0.99/0.680.01|0.96|0.16/0.31/0.63/0.68/0.08/0.68
P,(m¢ = 0) |0.50/0.82/0.50|0.08]0.500.67/0.50,0.23/0.50,0.03
P,(m¢ = 1) |0.50[0.18/0.50| 0.92/0.50/0.33/0.50/0.77/0.50,0.97
P,(m, = 0) [5.00|p.27|[L.00]0.49|.00|0.31|0.28|p.02|L.00[D.07
P,(m, = 1) [1.00)0.73[0.00/|0.51|0.00[0.69|0.72|p.98[0.00/p.93

§ 4.3 Decoding of Turbo Codes

After iteration 2;

P.(m; = 0)]0.00/0.93/0.99/0.01/0.91/0.07/0.37/0.93/0.93/0.93
P.(m; = 1)|1.000.07|0.01/0.99/0.09/0.93/0.63/0.07/0.07/0.07
P.(m: = 0)]0.500.99/0.50|0.04/0.50/0.14/0.50/0.34/0.50/0.01
P.(m; = 1)|0.50/0.01/0.50|0.96/0.50/0.86/0.50/0.66/0.50/0.99
P,(m¢ = 0) [0.00|0.92|L.00][0.11|L.00[0.01|0.28|D.32|L.0010.68
P,(m, = 1)|1.000.08[0.00f|0.890.00/0.990.72[0.68[0.00/p.32

After iteration 3:

P.(m: = 0) 10.00/0.97|0.99]0.01/0.94/0.04/0.37|0.96/0.93/0.96
P,(m: = 1) |1.000.03|0.01|0.990.06/0.96|0.63|0.04/0.07|0.04
P.(m¢ = 0) |0.50/0.990.50|0.03/0.50]0.09/0.50/0.370.50/0.01
P,(m: = 1) |0.50/0.02/0.50|0.97|0.500.91/0.50/0.63/0.50/0.99
P,(m¢ = 0) [0.00|0.96/7.000.70|.00|D.00|D.28|D.49|L.00]0.82
P,(m, = 1) [1.000.04/0.000.9q|0.00L.00/0.72|p.51{0.00/0.1¢

§ 4.3 Decoding of Turbo Codes

After iteration 4:

P.(m: = 0) 10.00/0.97|0.99|0.01/0.94/0.04/0.37|0.97|0.93/0.97
P.(m; = 1) |1.00/0.03/0.01|0.99/0.06/0.96/0.63|0.03/0.070.03
P,(m: = 0)]0.500.99/0.50|0.03/0.50/0.09/0.500.37/0.50/0.01
P.(m: = 1) |0.50/0.01/0.50|0.97|0.500.91/0.50(0.63/0.50/0.99
P,(m¢ = 0)|0.00/0.97/7.00/0.20|.00|0.00/0.28|0.51/1.04)0.82
P,(m; = 1) |1.00[0.030.04 0.90/0.00|1L.00[0.72|0.49/0.0G0.18

§ 4.3 Decoding of Turbo Codes

Remark: Turbo decoding efficiency can be improved by the so called
log-MAP algorithm or the max-log-MAP algorithm [2]. Both of the
algorithms deal with log-likelihood ratios rather than probabilities. The
max-log-MAP algorithm has a computational complexity of not more
than three times of Viterbi algorithm, but suffers a slight performance
loss compared to BCJR and log-MAP algorithms.

[2] T. K. Moon, Error correction coding-Mathematical Methods and Algorithms., John Wiley
& Sons Press, 2005.

S 4.4 Performance Analysis

5/7) RSC over AWGN

BER performance of rate half turbo code with constituent code of (1

channel using BPSK.

1.E+00

sE=====:=:=:=:=

EEEE FEEEEEEE

G smRse

on
e

A Bteration

Titeration

b

"--%llta-leiteraﬁorr------

- =h=Siteration-—---oo

e e o L

hd -

1.E-02

1.E-07

10

E,/N, (dB)

S 4.4 Performance Analysis

S
Q: Why there is an error floor?

- The bit error rate (BER) (denoted as P;) of a conv. code (and turbo code) is

determined by
2% w; 2d; R -E
P SZ- TLQ J lN :
=1 0

» Letm; denote a message vector and ¢; denote its corresponding codeword,
wW; = Welght(ﬁll) and di = Welght(C_l)

> k = length(m;) and there are 2% codewords in the code book.
» R is the rate of the code.

> z—” — signal-to-noise ratio (SNR).
0

uZ
Q function as Q(x) = \/%fxoo e zdu.

S 4.4 Performance Analysis

- Since d; = dfrees dfree +1, -, k/», by grouping terms with the same d;, the
above inequality can be written as:

“In Wy 2d - R - Ej,
P”Sz % ¢ N,

dzdfree

:zk/R WdeQ 2d -R - E,
k N,

dzdfree

» wy — weight of message vectors that correspond to codeword of weight d.

» Nz — Number of codewords of weight d.

» W, — Total weight of message vectors that correspond to codeword of
weight d.

S 4.4 Performance Analysis

- When the SNR (%) increases, the asymptotic behavior of P, is dominated by the
0
first term in the summation as

Py

~ Ndfreewdfree 0 2dfree - R - Ep
k N,

- Inthelog P, vs. log% graph, ds,.. determines the slope of the BER vs. SNR (dB)
0
curve.

A: The error floor at high SNR is due to a small d ..., or alternatively
the presence of low weight codewords.

S 4.4 Performance Analysis
T —S—S—S—_—_..

Motivation of having an interleaver between the two encoders: Try to avoid the
low weight conv. codewords and subsequently the low weight turbo codeword being
produced.

Example 4.3 Following the encoder structure of Example 4.1, if the message
vector m = [0 0 0 0 1], the output of the RSC (1) will be

¢, = [00 00 00 00 11].

Without interleaving, the output of RSC (2) will be the same as RSC (1) as
¢, = ¢;. And the turbo codeword is

¢ = [000 000 000 000 111].
With interleaving, m’ = [1 0 0 0 0], the output of RSC (2) will now be

¢, = [11 0001 00 01].
And the turbo codeword becomes

¢ =[001 000001 000 111].

