
Chapter 4 Turbo Codes

• 4.1 Introduction of Turbo Codes

• 4.2 Encoding of Turbo Codes

• 4.3 Decoding of Turbo Codes (Turbo Decoding)

• 4.4 Performance Analysis



§4.1 Introduction of Turbo Codes 

- Invented by C. Berrou, A. Glavieux and P. Thitimajshima in 1993 [1].

- Integrate a couple of conv. codes in a parallel encoding structure. The two conv. 

codes are called the constituent codes of a turbo code.

- Exploit the interplay between the decoders of the two constituent codes in a soft 

information exchange decoding mechanism.

- Such a decoding mechanism is called turbo decoding, turbo decoding is NOT 

limited to decode turbo codes, but to any concatenated (serial or parallel) code.

- Shannon capacity can be approached with the existence of error floor.    

[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding and 

decoding: turbo codes, ” Proc. ICC’ 93, pp. 1064-1047, Geneva, May 1993. 



§4.1 Introduction of Turbo Codes 

Why do we need code concatenation?

In BCJR decoding of a conv. code,
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With a single conv. code, we do not have any information of information bit 𝑚𝑡 and the a

priori prob. 𝑃𝑎 𝑚𝑡 = 0 = 𝑃𝑎 𝑚𝑡 = 1 = 0.5. With a couple of conv. codes that share the 

same information bits (but in different permutations), one decoder can gain a priori prob. of 

information bits 𝑚𝑡 from the output of the other decoder, and vice versa. As a result, BCJR 

decoding of each constituent code can be improved. 
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SISO Decod.

E.g.,

BCJR Decod.

𝑃𝑝,   𝑃𝑒

Extrinsic prob.: 𝑃𝑒 =
𝑃𝑝

𝑃𝑎
, extra knowledge 

(excluding the a priori prob.) delivered by 

the SISO decoder. 

A posteriori prob.: knowledge 

about the information bits after 

the decoding. It is used for 

estimation.

𝑃𝑎

A priori prob.: knowledge about 

the information bits before the 

decoding. It is also called the 

intrinsic prob.



§4.2 Encoding of Turbo Codes 

Constituent codes: Recursive Systematic Conv. (RSC) codes. Normally, the two 

constituent codes are the same.

Interleaver (Π): Generate a different information sequence (a permuted sequence) as 

the input to the RSC encoder (2). Normally, it is a random interleaver.  

Puncture: Control the rate of the turbo code.
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§4.2 Encoding of Turbo Codes 

Π
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𝑝𝑡
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- Given the binary message sequence as  𝑚 = [𝑚1, 𝑚2, ⋯ 𝑚𝑘], output of the turbo encoder 

should be 

 𝑐 = [𝑚1 𝑝1
1
𝑝1

2
𝑚2 𝑝2

1
𝑝2

2
⋯ 𝑚𝑡 𝑝𝑡

1
𝑝𝑡

2
⋯ 𝑚𝑘 𝑝𝑘

1
𝑝𝑘
(2)
].

- Rate of the turbo code is 1/3. To increase the rate to ½, we can use puncturing whose 

pattern can be represented by 
1 0
0 1

puncture 𝑝𝑡
(2)

when 𝑡 is odd                      puncture 𝑝𝑡
(1)

when 𝑡 is even. 

- After puncturing, output of the turbo encoder should be 

 𝑐 = [𝑚1 𝑝1
1

𝑚2 𝑝2
2

⋯ 𝑚𝑘 𝑝𝑘
1
(𝑚𝑘 𝑝𝑘

(2)
)]

when 𝑘 is odd                                        when 𝑘 is even. 



§4.2 Encoding of Turbo Codes 

Example 4.1 Given the turbo encoder shown below with constituent code of conv. 

(1,  1 1+𝑥2). The puncturing pattern is 
1 0
0 1

. The interleaving pattern is {8, 3, 7, 6, 

9, 1, 10, 5, 2, 4}. Determine the turbo codeword of message vector  𝑚 = [1 0 0 1 0 1 

1 0 0 0].
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Trellis of the code

Output of the 1st constituent code is:

 𝑝(1) = [1 0 1 1 1 0 0 0 0 0]

After interleaving, the permuted message 

vector becomes

 𝑚′ = [0 0 1 1 0 1 0 0 0 1]

Output of the 2nd constituent code is:

 𝑝(2) = [0 0 1 1 1 0 1 0 1 1]

Before puncturing, the turbo codeword is

 𝑐 = [110 000 011 111 011 100 101 000 001 001]

After puncturing, the turbo codeword is

 𝑐 = [11 00 01 11 01 10 10 00 00 01]

The original message vector

 𝑚 = [1 0 0 1 0 1 1 0 0 0]



§4.3 Decoding of Turbo Codes 

- Turbo codeword  𝑐 = [𝑚1 𝑝1
1
𝑝1

2
, 𝑚2 𝑝2

1
𝑝2

2
, ⋯ , 𝑚𝑘 𝑝𝑘

1
𝑝𝑘
(2)
].

- Assume the turbo codeword is transmitted using BPSK.

- Received symbol vector

 𝑟 = [𝑟1
0
𝑟1
1
𝑟1
2
, 𝑟2

0
𝑟2
1
𝑟2
2
, ⋯ , 𝑟𝑘

0
𝑟𝑘
1
𝑟𝑘
(2)
].

- Interleaved message vector

 𝑚′ = Π  𝑚 = [𝑚1
′ , 𝑚2

′ , ⋯ , 𝑚𝑘
′ ].

- Interleaved (information) symbol vector

𝑟1
0 ′
, 𝑟2

0 ′
, ⋯ , 𝑟𝑘

0 ′
= Π([𝑟1

0
, 𝑟2

0
, ⋯ , 𝑟𝑘

(0)
]).

- Parameterization



§4.3 Decoding of Turbo Codes 

Turbo decoding structure

Π Π Π−1

BCJR (1)

BCJR (2)
Π−1

- In BCJR (1), trellis transition probability is determined by 

In BCJR (2), trellis transition probability is determined by 

ΓΩ→Ω′ = 𝑃𝑎(𝑚𝑡)𝑃𝑐ℎ(𝑚𝑡)𝑃𝑐ℎ(𝑝𝑡
(1)
).

ΓΩ→Ω′ = 𝑃𝑎(𝑚𝑡
′)𝑃𝑐ℎ(𝑚𝑡

′)𝑃𝑐ℎ(𝑝𝑡
(2)
).

 𝑟
𝑟1
(0)
𝑟1
(1)

⋯𝑟𝑘
(0)
𝑟𝑘
(1)

𝑃𝑐ℎ 𝑚𝑡 , 𝑃𝑐ℎ(𝑝𝑡
(1)
) 𝑃𝑒(𝑚𝑡)

𝑃𝑎(𝑚𝑡)

𝑃𝑎(𝑚𝑡
′) 𝑃𝑒(𝑚𝑡

′)

𝑃𝑝(𝑚𝑡
′) 𝑃𝑝(𝑚𝑡)𝑃𝑐ℎ(𝑚𝑡

′), 𝑃𝑐ℎ(𝑝𝑡
(2)
)𝑟1

0 ′
𝑟1
(2)
, ⋯ 𝑟𝑘

0 ′
𝑟𝑘
(2)



§4.3 Decoding of Turbo Codes 

Π Π Π−1

BCJR (1)

BCJR (2)
Π−1

 𝑟
𝑟1
(0)
𝑟1
(1)

⋯𝑟𝑘
(0)
𝑟𝑘
(1)

𝑃𝑐ℎ 𝑚𝑡 , 𝑃𝑐ℎ(𝑝𝑡
(1)
) 𝑃𝑒(𝑚𝑡)

𝑃𝑎(𝑚𝑡)

𝑃𝑎(𝑚𝑡
′) 𝑃𝑒(𝑚𝑡

′)

𝑃𝑝(𝑚𝑡
′) 𝑃𝑝(𝑚𝑡)𝑃𝑐ℎ(𝑚𝑡

′), 𝑃𝑐ℎ(𝑝𝑡
(2)
)𝑟1

0 ′
𝑟1
(2)
, ⋯ 𝑟𝑘

0 ′
𝑟𝑘
(2)

Turbo decoding structure

- At the beginning of iterations, knowledge of information bits 𝑚𝑡 is not available, and 

𝑃𝑎(𝑚𝑡) are initialized as 

- Once BCJR (1) delivers 𝑃𝑒(𝑚𝑡), knowledge of interleaved information bits 𝑚𝑡
′ will be 

gained by mapping

and BCJR (2) starts its decoding with 𝑃𝑎(𝑚𝑡
′), 𝑃𝑐ℎ(𝑚𝑡

′) and 𝑃𝑐ℎ(𝑝𝑡
(2)
).

𝑃𝑎 𝑚𝑡 = 0 = 𝑃𝑎 𝑚𝑡 = 1 = ½.

Π(𝑃𝑒(𝑚𝑡)) → 𝑃𝑎(𝑚𝑡
′),
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Π Π Π−1

BCJR (1)

BCJR (2)
Π−1

 𝑟
𝑟1
(0)
𝑟1
(1)

⋯𝑟𝑘
(0)
𝑟𝑘
(1)

𝑃𝑐ℎ 𝑚𝑡 , 𝑃𝑐ℎ(𝑝𝑡
(1)
) 𝑃𝑒(𝑚𝑡)

𝑃𝑎(𝑚𝑡)

𝑃𝑎(𝑚𝑡
′) 𝑃𝑒(𝑚𝑡

′)

𝑃𝑝(𝑚𝑡
′) 𝑃𝑝(𝑚𝑡)𝑃𝑐ℎ(𝑚𝑡

′), 𝑃𝑐ℎ(𝑝𝑡
(2)
)𝑟1

0 ′
𝑟1
(2)
, ⋯ 𝑟𝑘

0 ′
𝑟𝑘
(2)

Turbo decoding structure

- Once BCJR (2) delivers 𝑃𝑒(𝑚𝑡
′), knowledge of information bits 𝑚𝑡 will be gained by mapping

and BCJR (1) performs another round of decoding with 𝑃𝑎(𝑚𝑡 ), 𝑃𝑐ℎ(𝑚𝑡 ) and 𝑃𝑐ℎ(𝑝𝑡
(1)
).

Π−1(𝑃𝑒(𝑚𝑡
′)) → 𝑃𝑎(𝑚𝑡 ),

- After a sufficient number of iterations, decision will be made based on the a posteriori prob. 

𝑃𝑝(𝑚𝑡) that is the deinterleaved version of output of BCJR (2), 𝑃𝑝(𝑚𝑡
′).

- If parity bits 𝑝𝑡
(1)

(or 𝑝𝑡
(2)

) have been punctured, the channel observations become

𝑃𝑐ℎ 𝑝𝑡
1
= 0 = 𝑃𝑐ℎ 𝑝𝑡

1
= 1 = ½, (or 𝑃𝑐ℎ 𝑝𝑡

2
= 0 = 𝑃𝑐ℎ 𝑝𝑡

2
= 1 = ½). 

And all the channel observations remain unchanged during the whole iterative process.



§4.3 Decoding of Turbo Codes 

Example 4.2. Message vector  𝑚 = [1 0 0 1 0 1 1 0 0 0]

Transmitted codeword  𝑐 = [11 00 01 11 01 10 10 00 00 01]

Received symbol  𝑟 = [1.66, 2.49, -2.35, -1.39, 0.22, 1.27, -0.41, 0.30, 

-2.00, 1.16, 1.70, -1.69, 0.90, -0.38, -3.28, -0.82, 0.12, -1.30, -3.31, 2.28].

After iteration 1:

𝑃𝑒(𝑚𝑡 = 0)
𝑃𝑒(𝑚𝑡 = 1)
𝑃𝑒(𝑚𝑡

′ = 0)
𝑃𝑒(𝑚𝑡

′ = 1)
𝑃𝑝(𝑚𝑡 = 0)

𝑃𝑝(𝑚𝑡 = 1)

0.01

0.99

0.50

0.50

0.00

1.00

0.32

0.68

0.82

0.18

0.27

0.73

0.99

0.01

0.50

0.50

1.00

0.00

0.04

0.96

0.08

0.92

0.49

0.51

0.84

0.16

0.50

0.50

1.00

0.00

0.69

0.31

0.67

0.33

0.31

0.69

0.37

0.63

0.50

0.50

0.28

0.72

0.32

0.68

0.23

0.77

0.02

0.98

0.92

0.08

0.50

0.50

1.00

0.00

0.32

0.68

0.03

0.97

0.07

0.93
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𝑃𝑒(𝑚𝑡 = 0)
𝑃𝑒(𝑚𝑡 = 1)
𝑃𝑒(𝑚𝑡

′ = 0)
𝑃𝑒(𝑚𝑡

′ = 1)
𝑃𝑝(𝑚𝑡 = 0)

𝑃𝑝(𝑚𝑡 = 1)

0.00

1.00

0.50

0.50

0.00

1.00

0.93

0.07

0.99

0.01

0.92

0.08

0.99

0.01

0.50

0.50

1.00

0.00

0.01

0.99

0.04

0.96

0.11

0.89

0.91

0.09

0.50

0.50

1.00

0.00

0.07

0.93

0.14

0.86

0.01

0.99

0.37

0.63

0.50

0.50

0.28

0.72

0.93

0.07

0.34

0.66

0.32

0.68

0.93

0.07

0.50

0.50

1.00

0.00

0.93

0.07

0.01

0.99

0.68

0.32

𝑃𝑒(𝑚𝑡 = 0)
𝑃𝑒(𝑚𝑡 = 1)
𝑃𝑒(𝑚𝑡

′ = 0)
𝑃𝑒(𝑚𝑡

′ = 1)
𝑃𝑝(𝑚𝑡 = 0)

𝑃𝑝(𝑚𝑡 = 1)

0.00

1.00

0.50

0.50

0.00

1.00

0.97

0.03

0.99

0.01

0.96

0.04

0.99

0.01

0.50

0.50

1.00

0.00

0.01

0.99

0.03

0.97

0.10

0.90

0.94

0.06

0.50

0.50

1.00

0.00

0.04

0.96

0.09

0.91

0.00

1.00

0.37

0.63

0.50

0.50

0.28

0.72

0.96

0.04

0.37

0.63

0.49

0.51

0.93

0.07

0.50

0.50

1.00

0.00

0.96

0.04

0.01

0.99

0.82

0.18

After iteration 2:

After iteration 3:
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𝑃𝑒(𝑚𝑡 = 0)
𝑃𝑒(𝑚𝑡 = 1)
𝑃𝑒(𝑚𝑡

′ = 0)
𝑃𝑒(𝑚𝑡

′ = 1)
𝑃𝑝(𝑚𝑡 = 0)

𝑃𝑝(𝑚𝑡 = 1)

0.00

1.00

0.50

0.50

0.00

1.00

0.97

0.03

0.99

0.01

0.97

0.03

0.99

0.01

0.50

0.50

1.00

0.00

0.01

0.99

0.03

0.97

0.10

0.90

0.94

0.06

0.50

0.50

1.00

0.00

0.04

0.96

0.09

0.91

0.00

1.00

0.37

0.63

0.50

0.50

0.28

0.72

0.97

0.03

0.37

0.63

0.51

0.49

0.93

0.07

0.50

0.50

1.00

0.00

0.97

0.03

0.01

0.99

0.82

0.18

After iteration 4:
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Remark: Turbo decoding efficiency can be improved by the so called

log-MAP algorithm or the max-log-MAP algorithm [2]. Both of the

algorithms deal with log-likelihood ratios rather than probabilities. The

max-log-MAP algorithm has a computational complexity of not more

than three times of Viterbi algorithm, but suffers a slight performance

loss compared to BCJR and log-MAP algorithms.

[2] T. K. Moon, Error correction coding-Mathematical Methods and Algorithms., John Wiley

& Sons Press, 2005.



§4.4 Performance Analysis

BER performance of rate half turbo code with constituent code of (1, 5/7) RSC over AWGN 

channel using BPSK. 

1.E-07
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1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7 8 9 10

B
E

R

Eb/N0 (dB)

(1, 5/7) RSC

1 iteration

2 iteration

3 iteration

4 iteration

5 iteration

10 iteration

20 iteration

SNR threshold
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Q: Why there is an error floor?

- The bit error rate (BER) (denoted as 𝑃𝑏) of a conv. code (and turbo code) is 

determined by 

𝑃𝑏 ≤ 
𝑖=1

2𝑘 𝑤𝑖

𝑘
𝑄

2𝑑𝑖 ∙ 𝑅 ∙ 𝐸𝑏
𝑁0

.

 Let  𝑚𝑖 denote a message vector and  𝑐𝑖 denote its corresponding codeword, 

𝑤𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡(  𝑚𝑖) and 𝑑𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡  𝑐𝑖 . 

 𝑘 = 𝑙𝑒𝑛𝑔𝑡ℎ(  𝑚𝑖) and there are 2𝑘 codewords in the code book. 

 𝑅 is the rate of the code.


𝐸𝑏

𝑁0
— signal-to-noise ratio (SNR).

Q function as 𝑄(𝑥) ≜
1

2𝜋
 𝑥
∞
𝑒−

𝑢2

2 𝑑𝑢 .



§4.4 Performance Analysis

- Since 𝑑𝑖 = 𝑑𝑓𝑟𝑒𝑒, 𝑑𝑓𝑟𝑒𝑒 + 1, ⋯ ,  𝑘 𝑅, by grouping terms with the same 𝑑𝑖, the 

above inequality can be written as:  

  𝑤𝑑 — weight of message vectors that correspond to codeword of weight 𝑑. 

𝑃𝑏 ≤  
𝑑=𝑑𝑓𝑟𝑒𝑒

 𝑘 𝑅 𝑊𝑑

𝑘
𝑄

2𝑑 ∙ 𝑅 ∙ 𝐸𝑏
𝑁0

= 
𝑑=𝑑𝑓𝑟𝑒𝑒

 𝑘 𝑅  𝑤𝑑𝑁𝑑
𝑘

𝑄
2𝑑 ∙ 𝑅 ∙ 𝐸𝑏

𝑁0
.

 𝑁𝑑 — Number of codewords of weight 𝑑. 

 𝑊𝑑 — Total weight of message vectors that correspond to codeword of  

weight 𝑑. 
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- When the SNR (
𝐸𝑏

𝑁0
) increases, the asymptotic behavior of 𝑃𝑏 is dominated by the 

first term in the summation as 

𝑃𝑏 ≅
𝑁𝑑𝑓𝑟𝑒𝑒  𝑤𝑑𝑓𝑟𝑒𝑒

𝑘
𝑄

2𝑑𝑓𝑟𝑒𝑒 ∙ 𝑅 ∙ 𝐸𝑏

𝑁0
.

- In the log𝑃𝑏 vs. log
𝐸𝑏

𝑁0
graph, 𝑑𝑓𝑟𝑒𝑒 determines the slope of the BER vs. SNR (dB) 

curve.

A: The error floor at high SNR is due to a small 𝒅𝒇𝒓𝒆𝒆, or alternatively 

the presence of low weight codewords. 



§4.4 Performance Analysis

Motivation of having an interleaver between the two encoders: Try to avoid the 

low weight conv. codewords and subsequently the low weight turbo codeword being 

produced. 

Example 4.3 Following the encoder structure of Example 4.1, if the message 

vector  𝑚 = [0 0 0 0 1], the output of the RSC (1) will be 

 𝑐1 = [00 00 00 00 11].

Without interleaving, the output of RSC (2) will be the same as RSC (1) as 

 𝑐2 =  𝑐1. And the turbo codeword is

 𝑐 = [000 000 000 000 111].

With interleaving,  𝑚′ = [1 0 0 0 0], the output of RSC (2) will now be 

 𝑐2 = [11 00 01 00 01].

And the turbo codeword becomes 

 𝑐 = [001 000 001 000 111].


