Chapter 4 Turbo Codes

- 4.1 Introduction of Turbo Codes
- 4.2 Encoding of Turbo Codes
- 4.3 Decoding of Turbo Codes (Turbo Decoding)
- 4.4 Performance Analysis

§ 4.1 Introduction of Turbo Codes

- Invented by C. Berrou, A. Glavieux and P. Thitimajshima in 1993 [1].
- Integrate a couple of conv. codes in a parallel encoding structure. The two conv. codes are called the constituent codes of a turbo code.
- Exploit the interplay between the decoders of the two constituent codes in a soft information exchange decoding mechanism.
- Such a decoding mechanism is called turbo decoding, turbo decoding is NOT limited to decode turbo codes, but to any concatenated (serial or parallel) code.
- Shannon capacity can be approached with the existence of error floor.

[1] C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: turbo codes," *Proc. ICC*'93, pp. 1064-1047, Geneva, May 1993.

§ 4.1 Introduction of Turbo Codes

Why do we need code concatenation?

In BCJR decoding of a conv. code,

With a single conv. code, we do not have any information of information bit m_t and the *a* priori prob. $P_a(m_t = 0) = P_a(m_t = 1) = 0.5$. With a couple of conv. codes that share the same information bits (but in different permutations), one decoder can gain *a priori* prob. of information bits m_t from the output of the other decoder, and vice versa. As a result, BCJR decoding of each constituent code can be improved.

§ 4.1 Introduction of Turbo Codes

SISO Decod.

E.g.,

A posteriori prob.: knowledge about the information bits after the decoding. It is used for estimation. P $P \leftarrow$

A priori prob.: knowledge aboutthe information bits before thedecoding. It is also called theintrinsic prob.

 $> P_a$

Extrinsic prob.: $P_e = \frac{P_p}{P_a}$, extra knowledge (excluding the *a priori* prob.) delivered by the SISO decoder.

Constituent codes: Recursive Systematic Conv. (RSC) codes. Normally, the two constituent codes are the same.

Interleaver (Π): Generate a different information sequence (a permuted sequence) as the input to the RSC encoder (2). Normally, it is a random interleaver.

Puncture: Control the rate of the turbo code.

- Given the binary message sequence as $\overline{m} = [m_1, m_2, \cdots, m_k]$, output of the turbo encoder should be

$$\bar{c} = [m_1 \, p_1^{(1)} \, p_1^{(2)} \, m_2 \, p_2^{(1)} \, p_2^{(2)} \, \cdots \, m_t \, p_t^{(1)} \, p_t^{(2)} \, \cdots \, m_k \, p_k^{(1)} \, p_k^{(2)}].$$

- Rate of the turbo code is 1/3. To increase the rate to ½, we can use puncturing whose pattern can be represented by

puncture
$$p_t^{(2)}$$
 when t is odd $\underbrace{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\text{puncture } p_t^{(1)}}$ when t is even.
- After puncturing, output of the turbo encoder should be
 $\bar{c} = [m_1 \, p_1^{(1)} \, m_2 \, p_2^{(2)} \cdots m_k \, p_k^{(1)} (\underline{m_k \, p_k^{(2)}})]_{\text{when } k \text{ is odd } \underline{A}}$ when k is even.

Example 4.1 Given the turbo encoder shown below with constituent code of conv. $(1, \frac{1}{1+x^2})$. The puncturing pattern is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. The interleaving pattern is $\{8, 3, 7, 6, 9, 1, 10, 5, 2, 4\}$. Determine the turbo codeword of message vector $\overline{m} = [1\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 0\ 0]$.

The original message vector

 $\overline{m} = [1\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 0\]$

Output of the 1st constituent code is:

 $\bar{p}^{(1)} = [1\,0\,1\,1\,1\,0\,0\,0\,0\,0]$

After interleaving, the permuted message vector becomes

 $\bar{m}' = [0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\]$

Output of the 2nd constituent code is:

 $\bar{p}^{(2)} = [0\ 0\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 1]$

Before puncturing, the turbo codeword is

 $\bar{c} = [110\ 000\ 011\ 111\ 011\ 100\ 101\ 000\ 001\ 001]$

After puncturing, the turbo codeword is

 $\bar{c} = [11\ 00\ 01\ 11\ 01\ 10\ 10\ 00\ 01\ 1]$

Trellis of the code

- Parameterization
 - Turbo codeword $\bar{c} = [m_1 p_1^{(1)} p_1^{(2)}, m_2 p_2^{(1)} p_2^{(2)}, \cdots, m_k p_k^{(1)} p_k^{(2)}].$
 - Assume the turbo codeword is transmitted using BPSK.
 - Received symbol vector

$$\bar{r} = [r_1^{(0)} r_1^{(1)} r_1^{(2)}, r_2^{(0)} r_2^{(1)} r_2^{(2)}, \cdots, r_k^{(0)} r_k^{(1)} r_k^{(2)}].$$

- Interleaved message vector

$$\overline{m}' = \Pi(\overline{m}) = [m'_1, m'_2, \cdots, m'_k].$$

- Interleaved (information) symbol vector

$$\left[r_1^{(0)'}, r_2^{(0)'}, \cdots, r_k^{(0)'}\right] = \Pi(\left[r_1^{(0)}, r_2^{(0)}, \cdots, r_k^{(0)}\right]).$$

Turbo decoding structure

- In BCJR (1), trellis transition probability is determined by $\Gamma_{\Omega \to \Omega'} = P_a(m_t) P_{ch}(m_t) P_{ch}(p_t^{(1)}).$

In BCJR (2), trellis transition probability is determined by

$$\Gamma_{\Omega \to \Omega'} = P_a(m'_t) P_{ch}(m'_t) P_{ch}(p_t^{(2)}).$$

Turbo decoding structure

- At the beginning of iterations, knowledge of information bits m_t is not available, and $P_a(m_t)$ are initialized as

$$P_a(m_t = 0) = P_a(m_t = 1) = \frac{1}{2}.$$

- Once BCJR (1) delivers $P_e(m_t)$, knowledge of interleaved information bits m'_t will be gained by mapping

$$\Pi(P_e(m_t)) \to P_a(m_t'),$$

and BCJR (2) starts its decoding with $P_a(m'_t)$, $P_{ch}(m'_t)$ and $P_{ch}(p_t^{(2)})$.

Turbo decoding structure

Once BCJR (2) delivers $P_e(m'_t)$, knowledge of information bits m_t will be gained by mapping $\Pi^{-1}(P_e(m'_t)) \to P_a(m_t),$ and BCJR (1) performs another round of decoding with $P_a(m_t)$, $P_{ch}(m_t)$ and $P_{ch}(p_t^{(1)})$.

- After a sufficient number of iterations, decision will be made based on the *a posteriori* prob. $P_p(m_t)$ that is the deinterleaved version of output of BCJR (2), $P_p(m'_t)$.
- If parity bits $p_t^{(1)}$ (or $p_t^{(2)}$) have been punctured, the channel observations become $P_{ch}\left(p_t^{(1)}=0\right) = P_{ch}\left(p_t^{(1)}=1\right) = \frac{1}{2}, \text{ (or } P_{ch}\left(p_t^{(2)}=0\right) = P_{ch}\left(p_t^{(2)}=1\right) = \frac{1}{2}.$

And all the channel observations remain unchanged during the whole iterative process.

Example 4.2. Message vector $\overline{m} = [1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0]$

Transmitted codeword $\bar{c} = [11\ 00\ 01\ 11\ 01\ 10\ 00\ 00\ 01]$

Received symbol $\bar{r} = [1.66, 2.49, -2.35, -1.39, 0.22, 1.27, -0.41, 0.30,$

-2.00, 1.16, 1.70, -1.69, 0.90, -0.38, -3.28, -0.82, 0.12, -1.30, -3.31, 2.28].

After iteration 1:

$P_e(m_t=0)$	0.01	0.32	0.99	0.04	0.84	0.69	0.37	0.32	0.92	0.32
$P_e(m_t=1)$	0.99	0.68	0.01	0.96	0.16	0.31	0.63	0.68	0.08	0.68
$P_e(m_t'=0)$	0.50	0.82	0.50	0.08	0.50	0.67	0.50	0.23	0.50	0.03
$P_{e}(m_{t}'=1)$	0.50	0.18	0.50	0.92	0.50	0.33	0.50	0.77	0.50	0.97
$P_p(m_t=0)$	0.00	0.27	1.00	0.49	1.00	0.31	0.28	0.02	1.00	0.07
$P_p(m_t=1)$	1.00	0.73	0.00	0.51	0.00	0.69	0.72	0.98	0.00	0.93

After iteration 2:

$P_e(m_t=0)$	0.00	0.93	0.99	0.01	0.91	0.07	0.37	0.93	0.93	0.93
$P_e(m_t=1)$	1.00	0.07	0.01	0.99	0.09	0.93	0.63	0.07	0.07	0.07
$P_e(m_t'=0)$	0.50	0.99	0.50	0.04	0.50	0.14	0.50	0.34	0.50	0.01
$P_{e}(m_{t}'=1)$	0.50	0.01	0.50	0.96	0.50	0.86	0.50	0.66	0.50	0.99
$P_p(m_t=0)$	0.00	0.92	1.00	0.11	1.00	0.01	0.28	0.32	1.00	0.68
$P_p(m_t=1)$	1.00	0.08	0.00	0.89	0.00	0.99	0.72	0.68	0.00	0.32

After iteration 3:

$P_e(m_t=0)$	0.00	0.97	0.99	0.01	0.94	0.04	0.37	0.96	0.93	0.96
$P_e(m_t=1)$	1.00	0.03	0.01	0.99	0.06	0.96	0.63	0.04	0.07	0.04
$P_e(m_t'=0)$	0.50	0.99	0.50	0.03	0.50	0.09	0.50	0.37	0.50	0.01
$P_{e}(m_{t}'=1)$	0.50	0.01	0.50	0.97	0.50	0.91	0.50	0.63	0.50	0.99
$P_p(m_t=0)$	0.00	0.96	1.00	0.10	1.00	0.00	0.28	0.49	1.00	0.82
$P_p(m_t=1)$	1.00	0.04	0.00	0.90	0.00	1.00	0.72	0.51	0.00	0.18

After iteration 4:

$P_e(m_t=0)$	0.00	0.97	0.99	0.01	0.94	0.04	0.37	0.97	0.93	0.97
$P_e(m_t=1)$	1.00	0.03	0.01	0.99	0.06	0.96	0.63	0.03	0.07	0.03
$P_e(m_t'=0)$	0.50	0.99	0.50	0.03	0.50	0.09	0.50	0.37	0.50	0.01
$P_e(m_t'=1)$	0.50	0.01	0.50	0.97	0.50	0.91	0.50	0.63	0.50	0.99
$P_p(m_t=0)$	0.00	0.97	1.00	0.10	1.00	0.00	0.28	0.51	1.00	0.82
$P_p(m_t = 1)$	1.00	0.03	0.00	0.90	0.00	1.00	0.72	0.49	0.00	0.18

Remark: Turbo decoding efficiency can be improved by the so called log-MAP algorithm or the max-log-MAP algorithm [2]. Both of the algorithms deal with log-likelihood ratios rather than probabilities. The max-log-MAP algorithm has a computational complexity of not more than three times of Viterbi algorithm, but suffers a slight performance loss compared to BCJR and log-MAP algorithms.

 [2] T. K. Moon, Error correction coding-Mathematical Methods and Algorithms., John Wiley & Sons Press, 2005.

BER performance of rate half turbo code with constituent code of (1, 5/7) RSC over AWGN channel using BPSK.

Q: Why there is an error floor?

- The bit error rate (BER) (denoted as *P_b*) of a conv. code (and turbo code) is determined by

$$P_b \leq \sum_{i=1}^{2^k} \frac{w_i}{k} Q\left(\sqrt{\frac{2d_i \cdot R \cdot E_b}{N_0}}\right).$$

- Let \overline{m}_i denote a message vector and \overline{c}_i denote its corresponding codeword, $w_i = weight(\overline{m}_i)$ and $d_i = weight(\overline{c}_i)$.
- ▶ $k = length(\overline{m}_i)$ and there are 2^k codewords in the code book.
- \triangleright *R* is the rate of the code.

 $\succ \frac{E_b}{N_0}$ — signal-to-noise ratio (SNR).

Q function as
$$Q(x) \triangleq \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-\frac{u^2}{2}} du$$
.

- Since $d_i = d_{free}$, $d_{free} + 1$, \cdots , k/R, by grouping terms with the same d_i , the above inequality can be written as:

$$P_b \leq \sum_{d=d_{free}}^{k/R} \frac{W_d}{k} Q\left(\sqrt{\frac{2d \cdot R \cdot E_b}{N_0}}\right)$$
$$= \sum_{d=d_{free}}^{k/R} \frac{\widehat{w}_d N_d}{k} Q\left(\sqrt{\frac{2d \cdot R \cdot E_b}{N_0}}\right)$$

 $\succ \hat{w}_d$ — weight of message vectors that correspond to codeword of weight d.

- > N_d Number of codewords of weight *d*.
- > W_d Total weight of message vectors that correspond to codeword of weight d.

- When the SNR $\left(\frac{E_b}{N_0}\right)$ increases, the asymptotic behavior of P_b is dominated by the first term in the summation as

$$P_b \cong \frac{N_{d_{free}} \widehat{w}_{d_{free}}}{k} Q\left(\sqrt{\frac{2d_{free} \cdot R \cdot E_b}{N_0}}\right)$$

- In the log P_b vs. log $\frac{E_b}{N_0}$ graph, d_{free} determines the slope of the BER vs. SNR (dB) curve.

A: The error floor at high SNR is due to a small d_{free} , or alternatively the presence of low weight codewords.

Motivation of having an interleaver between the two encoders: Try to avoid the low weight conv. codewords and subsequently the low weight turbo codeword being produced.

Example 4.3 Following the encoder structure of Example 4.1, if the message vector $\overline{m} = [0\ 0\ 0\ 0\ 1]$, the output of the RSC (1) will be

 $\bar{c}_1 = [00\ 00\ 00\ 00\ 11].$

Without interleaving, the output of RSC (2) will be the same as RSC (1) as $\bar{c}_2 = \bar{c}_1$. And the turbo codeword is

 $\bar{c} = [000\ 000\ 000\ 000\ 111].$

With interleaving, $\overline{m}' = [1\ 0\ 0\ 0\ 0]$, the output of RSC (2) will now be

 $\bar{c}_2 = [11\ 00\ 01\ 00\ 01].$

And the turbo codeword becomes

 $\bar{c} = [001\ 000\ 001\ 000\ 111].$