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S 3.1 Encoder Structure and Trellis Representation

* Introduction
— Encoder: contains memory (order m: m memory units);

— OQOutput: encoder output at time unit t depends on the input and the
memory units status at time unit t;

— By increasing the memory order m, one can increase the convolutional
code’s minimum distance (d;,) and achieve low bit error rate
performance (P});

— Decoding Methods:
 Viterbi algorithm [1]: Maximum Likelihood (ML) decoding algorithm;
» Bahl, Cocke, Jelinek, and Raviv (BCJR) [2] algorithm: Maximum A
Posteriori Probability (MAP) decoding algorithm, used for iterative
decoding process, e.g. turbo decoding.
[1] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inform.
Theory, IT-13, 260-269, April, 1967.

[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE
Trans, Inform. Theory, IT-20; 284-287, March, 1974.



S 3.1 Encoder Structure and Trellis Representation

- The (7, 5)4 conv. code

*  Encoder structure: /@\‘
Input a T > S

=
*  Encoding Process: \'@

(Initialised state sys; = 00)
At time t;

Code rate: ¥;

Memory: m = 2;

c,=ad® S,dS,;
c, =adS;;

Registers update:
S, =S,
S, = a.

Constraint length: m+ 1 =3
Output calculation:

At time t,




At time t, » 1 Attime t, (T > 0
0 0 0 T > 0
> () \fl\ > ()
N
At time t; M > |

\@ > 1

Input sequence [m;m, mymy,msm.]=[10100O0]

Output sequence [cf ¢ cacs cics cici cacs cic2]=[11100010 11 00]



S 3.1 Encoder Structure and Trellis Representation

A state transition diagram of the (7, 5)4 conv. code

1/10

State definition (s, s;)
a=00
b=10
c=01
d=11

- Input bit (0) / output bits (11) 2
Interpretation of The current state of the
the state diagram encoder is ¢. If the input
0/00 bit is 0, it will output 11

and the next state of the
encoder is a.




S 3.1 Encoder Structure and Trellis Representation

Tree Representation of the (7, 5)g conv. code

Time unit: 1 2 3 4 —_—
R
a 00 | I
. 00 b
T \— _ . . .
00 _c,|— > Tree diagram interpretation:
b | 107
o T The current state of the encoder is b. If the
Initialised state: a | VoL d input bit is 0, the output will be 10, and the
a .
|: next state of the encoder is C.
c 11
b 10 EO |: .
11 c T Input bit as 0 State after transition
d o L l Input bit as 1 Output from transition
01
d
o B

Example 3.1 Determine the codeword that corresponds to message [0 1 10 1]



S 3.1 Encoder Structure and Trellis Representation

e ——————————— |
Trellis of the (7, 5)g conv. code

State Table
IN | Current State | Next State | Out| 1D
0 00 00 001
1 00 10 11]2
0 01 00 1113
1 01 10 00| 4
0 10 01 10| 5
1 10 11 016
0 11 01 01] 7
1 11 11 10| 8

Trellis

Remark: A trellis tells the state transition and IN/OUT relationship. It can be
used to yield a convolutional codeword of a sequential input.

Example 3.2 Use the above trellis to determine the codeword that corresponds
tomessage [0 1 10 1].



S 3.1 Encoder Structure and Trellis Representation

A number of conv. codes

(7, 5)g conv. code (15, 13)4 conv. code

v
y

|

\m
N A\
4 states 8 states
(23, 35)4 conv. code (171, 133), conv. code

v

U
16 states 64 states

Remark: A convolutional code’s error-correction capability improves by
increasing the number of the encoder states.




S 3.1 Encoder Structure and Trellis Representation

Remark: The encoder structure can also be represented by generator

sequences or transfer functions.

Example 3.3: The (7, 5)g conv. code can also be written as:
A rate /5 conv. code with generator sequences
g =[111], g =[101].
A rate 1/, conv. code with transfer functions:

V) =1+x+x2, gPx)=1+x2



§ 3.2 Systematic Convolutional Codes

- The (7, 5)4 conv. code’s systematic counterpart 1s:

(7, 5)8 conv. code (1, 5/7)g conv. code
a > Cl
VA
/T 2
T 4 R S » S
v
Me
Nonsystematlc code Systematic code

Encoding and Registers’ updating rules:
[S, S,] are initialization as [0 O];
c,=a; (systematic feature) feedback =S,P S, ;
= a@® feedback® S, ; S/ '=S,; S, = a feedback;

Remark: Systematic encoding structure is important for iterative decoding,
e.g., the decoding of turbo codes.



§ 3.2 Systematic Convolutional Codes

L ——————————————————————
For the (1, 5/7)¢4 conv. code

State Table Trellis
IN | Current State | Next State | Out| ID 00 \(\)O /1// 00
0 00 00 01 | our \JJ\‘////////’ﬁ
1 00 10 112 6}‘\;Ll///>\\\ ,
0| ol 10| 00| 4 00 i U
1 01 00 11| 3
0 10 11 01] 6 10
1 10 01 10] 5
0 11 01 01 7 1
1 11 11 10| 8




§ 3.3 Viterbi Decoding Algorithm

Let us extend the trellis of the (7, 5); conv. code as if there 1s a sequential input.

- Such an extension results in a Viterbi trellis
- A path in the Viterbi trellis represents a convolutional codeword that
corresponds to a sequential input (message).



Decoding motivation: Given a received word R, find the mostly likely codeword c

such that the Hamming distance dygm (R, c ) is minimized.
Since C corresponds to a path in the Viterbi trellis, trace back the path of C enable

us to find out the message.
Branch metrics: Hamming distance between a transition branch’s output and the

corresponding received symbol (or bits).
Path metrics: Accumulated Hamming distance of the previous branch metrics.



§ 3.3 Viterbi Decoding Algorithm

Example 3.4. Given the (7, 5); conv. code as in Examples 3.1-3.3. The transmitted
codeword is

C=[00 11 01 01 O00].After channel, the received word is
R=[00 11 1 01 00]. Try to use the Viterbi trellis to decode it.

Step 1: Calculate all the branch metrics.

00 11 11 01 00
00 00 00 00 00
00 & ¢ * < 0




§ 3.3 Viterbi Decoding Algorithm

Step 2: Calculate the path metrics.

00 11 11 When two paths join
00 00 in a node, keep the
00 N 0 o N smaller accumulated
N\ Hamming distance.
01 o NI L
N
10 e x. e oo
11 o  w-lU_ -

When the two joining paths give the same accumulated
Hamming distance, pick up one randomly.



§ 3.3 Viterbi Decoding Algorithm

Step 3: Pick up the minimal path metric and trace back to determine
the message.

Tracing rules: (1) Trellis connection;
(2) The previous path metric should NOT be greater than the
current path metric;
(3) The tracing route should match the trellis transition ID.

00 11 11 01 00
00 00 00 00 00
2

&« &«
OO 0\\ O O,'l\\ 2 2’1\\

Decoding output: 0 1 1 0 1



§ 3.3 Viterbi Decoding Algorithm

Branch Metrics Table Path Metrics Table
012121110 0101 21 3] 212
|| 0 1! 2 co|oo | 3 11 11]13
210101 1| 2 |21 0] 2| 211
cwl|loo | 21 11 0 co|oo | 3 1] 213
| 1] 1 21 1

co|oo | 1] 0] 1

o1 ]1]0]1 Trellis Transition ID Table
co | oo | ] 21 1

[a—

whn

X (o [ X =
NS

AN D [ (W

(@)W ESNEEN Y OV

oo | | =




§ 3.3 Viterbi Decoding Algorithm

S —
» Soft-decision Viterbi decoding

» While we are performing the hard-decision Viterbi decoding, we have the scenario
that two joining paths yield the same accumulated Hamming distance. This would
cause decoding ‘ambiguity’ and performance penalty;

* Such a performance loss can be compensated by utilizing soft-decision decoding,
e.g., soft-decision Viterbi decoding

» Modulation and Demodulation (e.g., BPSK)

* Modulation: mapping binary information into a transmitted symbol;
* Demodulation: determining the binary information with a received symbol;

A A Received symbol
formation ©{05.0.9)
1 0 1 0
e | e Channel P P
(-1,0) (1,0) i ——— (-1,0) (1,0)
7

Transmitted symbol
Modulation Demodulation




§ 3.3 Viterbi Decoding Algorithm

———————————————— |
» Modulation and Demodulation (e.g., BPSK)

o Received symbol  Hard-decision: the information bit is 0. The
| 0(005, 0.9) Hamming distance becomes the Viterbi decoding
e o » metrics;
(-1,0) (1,0) Soft-decision: the information bit has Pr. of 0.7
being 0 and Pr. of 0.3 bing 1. The Euclidean

distance (or probability) becomes the Viterbi

Demodulation . :
decoding metrics;

» Euclidean Distance

Definition: The Euclidean distance between points p and  is the length of the line
segment connecting them.

p(X,. ) deyg =/ = %)2 + (Y, = ¥5)°
\' a(x,, Y»)




§ 3.3 Viterbi Decoding Algorithm

Example 3.5. Given the (7, 5); conv. code as in Examples 3.1-3.3. The transmitted
codewordis C=[00 11 01 01 00].

After BPSK modulation, the transmitted symbols are:
(1,0), (1, 0), (-1, 0), (-1, 0), (1, 0), (-1, 0), (1, 0), (-1, 0), (1, 0), (1, 0).

After the channel, the received symbols are:
(0.8,0.2),(1.2,-0.4), (-1.3, 0.3), (-0.9, -0.1), (-0.5, 0.4), (-1.0, 0.1),
(1.1, 0.4), (-0.7,-0.2), (1.2, 0.2), (0.9, 0.3).



§ 3.3 Viterbi Decoding Algorithm

Step 1: Calculate all the branch metrics. 0— (1, 0)
1— (-1, 0)

0.8,02)  (-1.3,0.3) (-05,04)  (1.1,0.4) (12,0.2)
(12,-04)  (-0.9,-0.1)  (-1.0,0.1)  (-0.7,-0.2) (0.9, 0.3)
00
00 € 53

AN
AN

01 e gl

10 e

11 °




§ 3.3 Viterbi Decoding Algorithm

Step 2: Calculate the path metrics.

(0.8,0.2) (-1.3,0.3) (-0.5, 0.4) (1.1, 0.4) (1.2,0.2)
(1.2,-0.4) (-0.9, -0.1) (-1.0, 0.1) (-0.7, -0.2) (0.9, 0.3)
00 00 00
00 & 053
01 g 288\1\1\ o o o
10 . e o o
11°

When two paths join in a node, keep the smaller accumulated
Euclidean distance.



§ 3.3 Viterbi Decoding Algorithm

Step 3: Pick up the minimal path metric and trace back to determine
the message.

Tracing rules: The same as hard-decision Viterbi decoding algorithm.

0.8,02)  (-1.3,0.3) (-0.5,04)  (1.1,0.4) (1.2,0.2)
(1.2,-0.4) (-0.9, -0.1) (-1.0,0.1) (-0.7,-0.2) (0.9, 0.3)

00 s 00 00 00 00 00

0\\\ 0.53 053’\1
O 28N\ e
10 2,88~

230
11°® ° o~
52,6 210 2546 2.74 5.28,6 2.68  6.78,38

Decoding output: 01 10 1



§ 3.3 Viterbi Decoding Algorithm

Branch Metrics Table Path Metrics Table

0.53] 3 |2.53]| 1.76| 0.42 0 10.5313.53 |5.48 15.25] 5.67
co | oo |0.65] 2.17] 2.93 | oo |4.83 |3.08 |3.64|6.65
2.88 0.45|0.65| 2.17| 2.93 o | 2.8810.98 [4.184.84 | 4.06
co | oo |2.53] 1.76] 0.42 00 | oo 52 |12.54|5.28| 6.78
oo |1.95]2.10| 2.74| 2.68

o | oo |1.56] 1.10] 1.94

© 232|156 | 1.10 1.94 Trellis Transition ID Table

co | oo |2.10] 2.74] 2.68

N I L

X [ X =

AN (D | |

(@)W ESNEEN Y OV
oo | | =




§ 3.3 Viterbi Decoding Algorithm

Free distance of convolutional code

- A convolutional code’s performance is determined by its free distance.
- Free distance
dfree — min{dHam(C_lt C_Z): CT1 * C_Z}

- With knowingC’ = [0 0 0 --- 0] is also a convolutional codeword.

dfree = min{weight(C),C # 0}

Hence, it is the minimum weight of all finite length paths in the
Viterbi trellis that diverge from and emerge with the all zero state.




§ 3.3 Viterbi Decoding Algorithm

Hence, it 1s the minimum weight of all finite length paths in the
Viterbi trellis that diverge from and emerge with the all zero state.

00 11 11 01 00
00 00 00 00 00
\\
Ol ® 1 e o o
A
dfree =5 2 \

10 . e o o
1 e o -l

Remark: Convolutional code with a large number of states will have a
great d,.q. , and hence stronger error-correction capability.



§ 3.3 Viterbi Decoding Algorithm

Remark: Convolutional code is more competent in correcting spread
errors, but not bursty errors.

/error
E.g,withR;=[0 1 e 1|e[1 01 0 0 e 1]

andR,=[0 1 0 e e e 01001 1],

Viterbi algorithm is more competent in correcting received vector R,



§ 3.4 BCJR Decoding Algorithm

- Hard-decision Viterbi algorithm: a Hard-In-Hard-Out (HIHO) decoding.
Soft-decision Viterbi algorithm: a Soft-In-Hard-Out (SIHO) decoding.
BCJR Algorithm: a Soft-In-Soft-Out (SISO) decoding.

- A Soft-In-Soft-Out (SISO) decoding algorithm that takes probabilities as the input
and delivers probabilities as the output.

- With an attempt to deliver both the a posteriori probabilities of P(c;|y) and
P(m,|y), it is also called the maximum a posteriori (MAP) algorithm.

- ¢ — convolutional coded bit,t =1, 2, - n.
- m, — information bit, t' = 1,2, --- k.

-y —received symbol vector.



§ 3.4 BCJR Decoding Algorithm

|
- In atrellis (e.g., trellis of the (7, 5)¢ conv. code).

00
()00 < 00(a)
The (IN, OUT, current state,
o ©@ 01 0T (b) next state) tuple happens as
L IN- 1 an entity.
©10 10 ()
(d) 11 — 11 (d)

That says at time instant t’
2 Prob [trellis transition w.r.t. an inputg | = Prob [m,» =801], ¢ € {0, 1}.
% Prob [trellis transition w.r.t. an output of 8] = Prob [C},(Z) =#01],0 € {0, 1}.

We seek to determine all the Prob [trellis transition w.r.t. an input of @] at time t’ to know

P(my =61y).
We seek to determine all the Prob [trellis transition w.r.t. an output of @] at time t’ to know

P(C:,(Z) =0|y).



§ 3.4 BCJR Decoding Algorithm

A Viterbi trellis snapshot at time instant t’:

Q Q’
00

(@) 00 = 00 (a)
(by 01

— IN:0

-——=IN: 1
(C) 10
) 11

- For a rate half conv. code, M’ — Ctlr, cf,

- Trellis state transition probability: (Q, Q') € {a, b, ¢, d}

lo»qr = Pa(myr) - Pch(cg’) ' Pch(CE')



§ 3.4 BCJR Decoding Algorithm

- Determine the state transition probabilities.

Q Q' 1 Ve
00
(a) 00 < 00 () ;//\0_,
) S1 52
(b) 01 01 (b
— IN: 0 BPSK
-——— IN: 1
Channel observations:
(d) 11 == 11 (d) Eg, B1PSK 1s used for inodulation.
Fen (G =0) = P(Y¢ [ ¢ = 0) )
Tooer = Pa(mer) Pp(cl) - Pon(€2) _ L s
Q-0 /a t ch ch\*¢ N, exp( N, )
P lv :1 = P lv :1
A priori prob. of information bit. E.g., w/o en (G =1) gyt G I?yt — 52
knowledge of m,, = n'_NOeXp(_ N—o)
Fo(myr =0) = Fy(my = 1) = 0.5. Pch(cf:) can be calculated similarly.




§ 3.4 BCJR Decoding Algorithm

Determine the probability of each beginning state.

determine A, (£1)

Probability of beginning a trellis transition
(Q- Q') from state Q (Determined by a
forward trace).

A (Q) =Ny Z(QO,Q )At’—1(Qo) ' FQ0—>Q )
t'=1,2,-,k.

N, : Normalization factor that ensures
At,(a) + Atr(b)-i'Atl(C)-f'Atr(d):l.

Knowing the Viterbi trellis starts from the all-zero state, we initialize:

Ao(a) - 1, and Ao(b) - Ao(C) - Ao(d) = 0.
E.g., in the highlighted trellis transition
Apr(a) = Apr_q(a) " Tynqg + A1 (D) " Tyq.



§ 3.4 BCJR Decoding Algorithm

- Determine the probability of each ending state.

- Probability of ending the trellis transition
(Q— Q') at state )" (Determined by a
backward trace).

Bt,+1(ﬂ’) - NB Z(Q,, Q”) Bt’+2(Q’,) ' FQ’—)Q” .

Ng: Normalization factor that ensures
B,.,(a)+ B;.(b) +B;r , (c)+B,,,(d)=1.

determine B, ()

- By ensuring after encoding, the shift registers (encoder) are restored to the all zero state
(achieved by bit tailing), we can initialize:

Biy1(a) = 1, and Byyq(b) = Byy1(c) = Bryq(d) = 0.
- E.g., in the highlighted trellis transition
Byryq(c) = Byryp(b) - Tenp + Beryp(d) - Tesg



§ 3.4 BCJR Decoding Algorithm

- Determine the a posteriori probability of each information bit

Q!
00 4
01 p - After the Forward Trace and
— IN: 0 Backward Trace, we obtain all the
-——-IN: 1 . A (Q), Biry () and I'y_, 7 of each
10 ¢ time instant t’. We can now determine
the a posteriori probabilities P(m,/|y)
i B | q for each information bit as
P(mtr = 0|_’)7) = Np Z Atr(ﬂ) . FQ_>QI . Btr+1(ﬂ’)
Q, 0",
State transition indicated by ——
P(my = 119) = Np Zm o A (@) To g By (@)

State transition indicated by ———-
Np: Normalization factor that ensures P(m, = 0|y) + P(m, = 1|y) = 1.



§ 3.4 BCJR Decoding Algorithm

- E.g.,

P(mt’ = Ob_’) = Np - (At’(a) ‘Tasa Bt’+1(a) + At’(b) ‘Tpoa Bt'+1(a)
Apr () “Tesp = Bpry  (b) + Apr (d) - Tgop - Byry (b)),

Np = P(my = 0[y) + P(m, = 1[y).

- Decision based on the a posteriori probabilities.

i, = 0, if P(myr = 017) = P(myr = 113)

. = 1,if P(my = 1|5) > P(myr = 0]3).



§ 3.4 BCJR Decoding Algorithm

Example 3.6. With the same transmitted codeword and received symbols of Example 3.5,

use the BCJR algorithm to decode it.

With the received symbols, we can determine

2 —
(Pen(cf =0) =083  [Pp(c=0)=092 [Pyp(c; =0)=0.07 {Pch(czz =0) =0.14
Pn(ct=1)=017 |'P,(c2=1)=008 L'P,(cl=1)=093 FPale;=1) =086
[Pep(c3 =0) =0.27 Pop(c2=0)=0.12  [Pp(cg =0) =090 [Pyp(ci=0)=0.20
Pu(cd=1)=073 Pu(c?=1)=088 |Pu(ct=1)=010 LP,(c2=1)=0.80

Pa(c2 =0)=092 P,(c2=0)=086
Pep(ci =1) =0.08 {Pch(CSZ =1) =0.14



§ 3.4 BCJR Decoding Algorithm

Step 1: Determine ['_, o/ of all transitions.

(0.8,0.2)  (-1.3,0.3) (-0.5,04)  (1.1,0.4) (12,0.2)
(12,-04)  (-09,-0.1)  (-1.0,0.1)  (-0.7,-02)  (0.9,0.3)

00 00
a0 <033 «




§ 3.4 BCJR Decoding Algorithm

Step 2: Forward trace, determine A,s ({1) of values.

08,02)  (-13,03)  (-0504)  (1.1,04) (12,0.2)
(12,-04)  (-09,-0.1)  (-1.0,0.1) (-0.7, - (0.9,0.3)
00 00 00 %8) 00
q 00 &= - P
1.0\, 0.9
N .
b 1% N 0.0
c 9% 0.02~~



§ 3.4 BCJR Decoding Algorithm

Step 3: Backward Trace, determine B,r, (1) of values.

(0.8, 0.2) (-1.3,0.3) (-0.5,0.4)  (1.1,0.4) (1.2,0.2)
(12,-04)  (-09,-0.1)  (-1.0,0.1)  (-0.7,-0.2)  (0.9,0.3)
aOOo.EE\ .
b O D4 ™ 3 e
¢ 100.?)2 o
d 11002

Assume we know the trellis ends at state C.



§ 3.4 BCJR Decoding Algorithm

Step 4: Determine the a posteriori probabilities of each information bit.

[P(my = 0]y) = 1.00

-P(my = 1]y) = 0.00 —> ;=0
{pm =1y =100 = M=t
[Pm i) to0 = M=t
(o =D = oy = =
{P(ms=0|37)=o.oo > a1

P(ms = 1|y) = 1.00



§ 3.4 BCJR Decoding Algorithm

BER performance of (7, 5)g conv. code over AWGN channel using

BPSK. 1.00E+00
. + T T T T T T T T T T T
—B—uncoded
P —o—Hard decision Viterbi
1.00E-01 —A—Soft decision Viterbi
@\ -6-BCJR
——SNR threshold
1.00E-02 F
a7
g 1.00E-03 F
1.00E-04 |
1.00E-05 F
1.00E-06

6
E,/N, (dB)



§ 3.4 BCJR Decoding Algorithm

BER performance of different conv. code over AWGN channel using BPSK.

1.00E+00

1.00E-01

1.00E-02
%1.00E—03
1.00E-04
1.00E-05

1.00E-06

—B-4-state (7, 5), conv. code
—o—_8-state (15, 13)4 conv: code
—A—16-state (23, 35); conv..code
—©—64-state (171, 133)g conv. code

E,/N, (dB)




§ 3.5 Trellis Coded Modulation

- Convolutional code enables reliable communications. But as a channel
code, its error-correction function is on the expense of spectral efficiency.

Nr.of information bits

) Spectral eﬁiCienCy (’7) - transmitted symbol
- E.g., an uncoded system A rate 1/2 conv. coded system
using BPSK using BPSK

n = 1 info bits/symbol n = 0.5 info bits/symbol

Can we achieve reliable and yet spectrally efficient communication?

Solution: Trellis Coded Modulation (TCM) that integrates a conv. code with
a high order modulation [3].

[3] G. Ungerboeck, "Channel coding with multilevel/phase signals," IEEE Trans. Inform. Theory, vol. IT-28, pp. 55-67, 1982.



§ 3.5 Trellis Coded Modulation

- A general structure of the TCM scheme

a, R c,
a, | Rate k/(k+1) & | Selecta
conv. subset from

N encoder . the | T Selecta Output

> constellation point symbol
Ar + from the ]
Aty subset

47




§ 3.5 Trellis Coded Modulation

.
- Arate 2/3 TCM code.

)
C3 | Selecta | Output
| point from g
a; C2]  Selecta | the subset
! C,;| subset
> > > o from
S LS 8PSK

Rate 2 4-state Convolutional Code

I(z)

€ 010 @(1)
o 08
8PSK Constellation ﬂwo 00 S
101 111
(5? 110 ‘(7) C3CCq



§ 3.5 Trellis Coded Modulation

State table of the rate 2/3 TCM code

Symbol
8PSK sym

Next State Output

Current State

Input

C3

)




§ 3.5 Trellis Coded Modulation

- Set Partitioning 8PSK

A, =2Ve sin = =0.765:/¢’

0 ] Origina}
constellation
C:6,¢, =010 ¢,=0 c, =1
------------------------------ 0-1.0------%--------------------------k“-----------------------------------------.---------.
011 001 il
100 000 Subset 1
A =2\/£_smz=\/2£'= 1.41/¢ .
101
________ =0 TN Cz:cz:/ o=l
010
001 011 v
Sl}pset2 ‘
100 000
111
101

(0, 4) 10 (2, 6) (1, 5) (3, 7)



§ 3.5 Trellis Coded Modulation

- Set Partitioning 8PSK

By doing set partitioning, the minimum distance between point within a
subset 1s increasing as: A, <A, <A,.

Original R -
constellation 4o =d(0,1) = z\gsmﬁ - 0-765\E
o0
8=
-
2
E Subset 1 A, = d(0,2) = /2¢ = 1.414,/¢'
b,
N

v | Subset2 A, = d(0,4) = 2./¢




§ 3.5 Trellis Coded Modulation

- Viterbi trellis of the rate 2/3 TCM code

For diverse/remerge transition:

oo = [d*(0,2) +d*(0,1) + d2(0,2)]
= 2¢' + (2 —V2)¢' + 2¢’ = 4.586¢'
For parallel transition: <---------
Afree = d*(0,4) = 4&'
Choose the smaller one as the free distance of the code:

dlzc,,ee = 4¢'

Remark: Bit ¢; = 0 and ¢y = 1 result in two parallel transition branches. By doing set
partitioning, we are trying to maximize the Euclidean distance between the two parallel
branches. So that the free distance of the TCM code can be maximized.




§ 3.5 Trellis Coded Modulation

- Asymptotic coding gain over an uncoded system.

- Spectral efficiency (1) = 2 info bits/sym.

uncoded QPSK rate 2/3 coded 8PSK
° °
E !/
. I
° ° ° °
drznin = 282 dfzree = 4¢’
d
R ¢k D)
Asymptotic coding gainy = — /‘9 = 2.
( min 8)

Asymptotic coding gain in dB = 10 log,, ¥y = 3 dB.

Remark: With the same transmission spectral efficiency of 2 info bits/sym, the TCM
coded system achieves 3 dB coding gain over the uncoded system asymptotically.




