Chapter 2 An Introduction of Channel Coding

- 2.1 Channel Coding
- 2.2 Block Codes
- 2.3 Cyclic Codes
- 2.4 The Parity-Check Matrix

§ 2.1 Channel Coding

- Channel Coding: map a k-dimensional message vector to an n-dimensional codeword vector, and $k<n$.
- If it is a binary channel code, there are at most $2^{k} n$-dimensional codewords. The redundancy of $2^{n}-2^{k}$ enables the error-correction capability of the code.

§ 2.1 Channel Coding

- Let $r=k / n$ be the code rate and C be the channel capacity. It is known if $r<C$, the estimation error probability of the source data $X\left(P_{e}[\hat{X} \neq X]\right)$ can approach zero.
- A channel code is a specific capacity approaching operational strategy.
- Code classification (according to the encoder's structure)

1. Block codes:
k-symbol message $\xrightarrow{\text { Enc. }} n$-symbol codeword.

- Encoder is memoryless and can be implemented with a combinatorial logic circuit.
- Linear Block Code: If c_{i} and c_{j} belong to a block code, $c^{\prime}=a \cdot c_{i}+b \cdot c_{j}$ also belongs to the block code. $(a, b) \in F_{q}$ in which the block code is defined.
- Examples: Reed-Solomon code, algebraic-geometric code, Hamming code, low-density parity-check code.

§ 2.1 Channel Coding

2. Convolutional codes:

- Encoder has a memory of order m and can be implemented with a sequential logic circuit.
- Examples: Convolutional code, Trellis coded modulation, Turbo code.

§ 2.1 Channel Coding

Start with Error-Dectection:

The simplest class of block code is the parity check code, which cannot correct errors but can detect a single error.

For each binary message a parity check bit is added so that there are an even number of 1 s in each codeword.

If $k=3$ then there are 8 possible messages. The eight codeword will be:
$000 \rightarrow \quad 0000$
$001 \rightarrow 0011$
$010 \rightarrow 0101$
$011 \rightarrow 0110$
$100 \rightarrow 1001$
$101 \rightarrow \quad 1010$
$110 \rightarrow \quad 1100$
$111 \rightarrow 1111$

When there are odd number of 1 , the decoder (detector) knows error has been introduced.

§ 2.2 Block Codes

- All block codes are defined by their codeword length n, their message length (or dimension) k and their minimum Hamming distance d. A block code is denoted as an (n, k, d) code.
- Code rate: $r=\frac{k}{n}$.
- Encoding of a Block code can be written as:

$$
\bar{c}=\bar{m} \cdot \mathbf{G}
$$

$\bar{m}-k$-dimensional message vector
\mathbf{G} - a generator matrix of size $k \times n$
$\bar{c}-n$-dimensional codeword vector

§ 2.2 Block Codes

Hamming Distance

The Hamming distance between any two codewords is the total number of positions where the two codewords differ.

The total number of positions where these two codewords differ is 4 . Therefore, the Hamming distance is 4 .

§ 2.2 Block Codes

Repetition Codes

A repetition encoder takes a single message bit and gives a codeword that is the message bit repeated n times, where n is an odd number

A message bit $\mathbf{0}$ will be encoded to give the codeword 0000... 000
A message bit 1 will be encoded to give the codeword 1111... 111

- This is the simplest type of error-correcting code as it only has two codewords
- We can easily see that it has a minimum Hamming distance $d=n$
- Hence it is an $(n, 1, n)$ block code

The generator matrix of the code is simply

$$
\mathbf{G}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & \ldots & 1
\end{array}\right]
$$

§ 2.2 Block Codes

Majority Decoding

To recover the transmitted codeword of a repetition code, a simple decoder known as a Majority Decoder is used

1. The number of 0 s and 1 s in the received word are counted
2. If the number of $0 \mathrm{~s}>$ number of 1 s (i.e. a majority), then the message bit was a 0 . Else if the number of $1 \mathrm{~s}>$ number of 0 s , then the message bit was a 1

Example: Say our message bit was a 1 and it was encoded by the $(5,1,5)$ repetition code then the codeword will be $\mathbf{c}=11111$.

- If after transmission we receive the word $\mathbf{r}=10011$ then the number of $1 \mathrm{~s}>$ number of 0 s and so the majority decoder decides that the original message was 1
- However, if we receive the word $\mathbf{r}=00011$ then the number of $0 \mathrm{~s}>$ number of 1 s and the Majority decoder incorrectly decides that the original message was 0

In general, $\mathrm{a}(n, 1, n)$ repetition code can correct up to $\frac{n-1}{2}$ errors

§ 2.2 Block Codes

The Minimum Hamming Distance and Error Correction of a Block Code

Take the $(3,1,3)$ repetition code with codewords 000 and 111

If we add one error, the possible received words are

Codewords

000	111
$\mathbf{0 0 1}$	$\mathbf{1 1 0}$
$\mathbf{0 1 0}$	$\mathbf{1 0 1}$

$100 \quad 011$

All received words are unique so we can see that this code can correct one error.

If we add two errors, the possible received words are

Codewords		
000	111	
$\mathbf{0 1 1}$	$\mathbf{1 0 0}$	
$\mathbf{1 1 0}$	$\mathbf{0 0 1}$	
$\mathbf{1 0 1}$	$\mathbf{0 1 0}$	

However, the received words also appear in the first list and so are not unique. Hence, this code cannot correct two or more errors.

§ 2.2 Block Codes

The Minimum Hamming Distance and Error Correction of a Block Code

The minimum Hamming distance: for any two codewords c_{i} and c_{j} picked up from the codebook \boldsymbol{C}, the minimum Hamming distance d is defined as:

$$
d=\min _{\left(c_{i}, c_{j}\right) \in \boldsymbol{c}}\left\{d_{H a m}\left(c_{i}, c_{j}\right)\right\}
$$

- In general, a block code can correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors, where $\lfloor x\rfloor$ means that x is rounded down to the nearest integer, e.g. $\lfloor 2.5\rfloor=2$
- A block code can detect $d-1$ errors

A block code can correct received words with up to $d / 2$ errors.

§ 2.2 Block Codes

§ 2.3 Cyclic Codes

- A cyclic code is a block code which has the property that cyclically shifting a codeword results in another codeword
- Cyclic codes have the advantage that simple encoders can be constructed using shift registers and low complexity decoding algorithms exist to decode them
- A cyclic code is constructed by first choosing a generator polynomial $g(x)$ and multiplying this by a message polynomial $m(x)$ to generate a codeword polynomial $c(x)$.

§ 2.3 Cyclic Codes

Cyclic Hamming Code

- The $(7,4,3)$ Hamming code is actually a cyclic code and can be constructed using the generator polynomial $g(x)=x^{3}+x^{2}+1$.
- For example, to encode the binary message 1010 we first write it as the message polynomial $m(x)=x^{3}+x$ and then multiply it with $g(x)$ modulo-2

$$
\begin{aligned}
c(x) & =m(x) g(x) \\
& =\left(x^{3}+x\right)\left(x^{3}+x^{2}+1\right) \\
& =x^{6}+x^{5}+x^{3}+x^{4}+x^{3}+x \quad\left[\left(x^{3}+x^{3}\right) \bmod 2=2 x^{3} \bmod 2=0\right] \\
& =x^{6}+x^{5}+x^{4}+x
\end{aligned}
$$

This codeword polynomial corresponds to 1110010

- However, notice that the first four bits of this codeword are not the same as the original message 1010
- This is an example of a non-systematic code

§ 2.3 Cyclic Codes

Systematic Cyclic Hamming Code

An encoder for the systematic ($7,4,3$) cyclic Hamming code

1. For the first $k=4$ message bits, switch 1 is closed and switch 2 is in position A
2. After the first 4 message bits have entered, switch 1 is open, switch 2 is in position B and the contents of memory elements are read out giving the parity check bits

§ 2.4 The Parity Check Matrix

- We need to know when a codeword is valid
- A parity check matrix \mathbf{H} is defined as the null space of the generator matrix \mathbf{G}, i.e. the inner product of the two matrices results in an all-zero matrix, $\mathbf{G H}^{\mathrm{T}}=\mathbf{0}$ (T is the transpose of the matrix)
- When a codeword is multiplied by the parity check matrix it should result in an all-zero vector, i.e.,

$$
\bar{c} \cdot \mathbf{H}^{\mathrm{T}}=\bar{m} \cdot \mathbf{G} \cdot \mathbf{H}^{\mathrm{T}}=\mathbf{0}
$$

- If $\hat{\boldsymbol{c}} \cdot \mathbf{H}^{\mathrm{T}}=\mathbf{0}$, it implies $\hat{\boldsymbol{c}}$ is a valid codeword.

§ 2.4 The Parity Check Matrix

- If the generator matrix is of the form $\mathbf{G}=\left[\mathbf{I}_{\mathbf{k}} \mid \mathbf{P}\right]$, where $\mathbf{I}_{\mathbf{k}}$ is a $(\boldsymbol{k} \times \boldsymbol{k})$ identity matrix and
\mathbf{P} is a parity matrix, then the parity check matrix is of the form $\mathbf{H}=\left[\mathbf{P}^{\mathbf{T}} \mid \mathbf{I}_{\mathrm{n}-\mathrm{k}}\right]$

Taking the $(7,4,3)$ Hamming code

$$
\mathbf{G}=\left[\begin{array}{llll:lll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

The parity check

$$
\mathbf{I}_{\mathrm{n}-\mathrm{k}}=\mathbf{I}_{7-4}=\mathbf{I}_{3}
$$ matrix is

$$
\mathbf{H}=\left[\begin{array}{llll:lll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

