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Chapter 1 Fundamentals of Information Theory \o2%

* 1.1 An Introduction of Information
« 1.2 Entropy

1.3 Mutual Information

1.4 Channel Capacity



% 1.1 An Introduction of Information
]
« What i1s information?
 How do we measure information?

Let us look at the following sentences:
1) 1 will be one year older next year.

No information Boring!
2) 1'was born in 1993.
Some information Being frank!
3) 1'was born in 1990s.
More information Interesting, so which year?

The number of possibilities should be linked to the information!




% 1.1 An Introduction of Information

et us do the following game:

Throw a die once
3 You have 6 possible outcomes.

000 {1, 2,3,4,5, 6}
b/

Throw three dies You have 63 possible outcomes.

{(1,1,1),(1,1,2),(1,1,3), (1,1, 4)

oooooo

(6, 6, 3),(6,6,4),(6,6,5),(6,6,6)}

Information should be ‘additive’.




% 1.1 An Introduction of Information

]
et us look at the following problem.

[f there are 30 students in our class, and we would like to use binary bits to
distinguish each of them, how many bits do we need?
Solution: 30 possibilities.
requires
log, 30=4.907 buts.
we need at least 5 bits to represent each of us.
Q: There are 7 billion people on our planet, how many bits do we need?

We can use ‘logarithm’ to scale down the a huge amount of
possibilities.

Number (binary bit) permutations are used to represent all
possibilities.




% 1.1 An Introduction of Information

Finally, let us look into the following game.

Pick one ball from the hat randomly,
The probability of picking up a white ball, i (25%).
Representing the probability needS
log., 714 = 2 bits.

The probability of picking up a black ball, = (75%).
Representing the probability needs
log, % = 0.415 bits.
4




§ 1.1 An Introduction of Information
L s— |
® How do we measure the overall event? (On average, how
many bits do we need to represent an outcome? )

1 1 3 1 .
. log, v + Zlogz 3, = 0.811 bits.
® The measure of information should be
Z?’:1 P;log, Pi_1 = _Z?J:l P;log, P;

* P;: probability of the ith possible event.
* N: Total number of possible events.

Measure of information should consider the probabilities of various
possible events.




$ 1.2 Entropy

- Information: knowledge not precisely known by the recipient, as it is a
measure of unexpectedness.

- Amount of information « (probability of occurance)?

- Messages: M, M, M; ...... M,

Pl

Prob of occur: P; P, P; ... P, (Py+P,+P3+--+F =1)
Measure the amount of information carried by each
message by

I(M;) =log,P7', i=1,2,..,q
x = 2, I(M;) in bits
x = e, I(M;) in nats
x =10, I(M;) in Hartley.

N

® Observations: ... ...



$ 1.2 Entropy
e ——————————————————————————————— |
Observations:

1) I(M;) - 0, if P-1;

2) 1(M;) =0, when 0<P; <1;

3) IM) >1(M;), if P>P

4) Given M; and M; are statistically independent,

I(M;&M;) = I(M;) + I(M;).



$ 1.2 Entropy

Example 1.1: A source outputs five possible messages. The probabilities of these
messages are:

1 1 1 1 1
Ph=- Pob=- Po==- P=— Pc=—,
17, %274 37 g 4716 57 16

Determine the information contained in each of these messages.
Solution:

I(My) = 1og2% =1 bit
I(M,) = logzi = 2 bit
1(My) = logzi = 3 bit
I(M,) = logzi = 4 bit

I(Ms) = logzi = 4 bit

Total amount of information = 14 bits. Is it right?



§ 1.2 Entropy

——————————————_______|
Given a source vector of length N, and it has U possible symbols
S1,587,... Sy, each of which has probability of P, P,,... Py of
occurrence.

To represent the source vector, we need

I =37 N Pilog,P " bits.

So on average, how many information bits do we need for a source
symbol?
H = % =YY  P;log,P~" bits/symbol

H is called the source entropy — average number of
information per source symbol.




§ 1.2 Entropy
———
Example 1.2: A source vector contains symbols of four

possible outcomes A, B, C, D. They occur with

probabilities of l, l, = and i, respectively.
4’ 3’ 3 12

Determine the entropy of the source vector.

1 1 2 1 1 1

= 1.856 bits/symbol



§ 1.2 Entropy

L ——————————————— |
Entropy of a binary source: The source vector has only two
possible symbols, 1.e., 0 and 1. Let P(0) denote the probability

of a source symbol being 0, and P(1) denote the probability of a
source symbol being 1, we have

H = P(0) -log,P(0)~! + P(1)log,P (1)1
or
H = P(0) - log, P(0)™ + (1 — P(0)) - log,(1 — P(0))~*

/

Binary Entropy Function




§ 1.2 Entropy
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§ 1.2 Entropy

e Entropy for two random variables X and Y.
e Realizations of X and Y are x and y.
e Distributions of X and Y are P(x) and P(y).

Joint Entropy H(X, Y): Given a joint distribution P(x, ),
HOXY) == ) > P(x,y)log;P(x,)

xXeX yeY

Condition Entropy H(Y|X):
H(Y|X) = Z PCOH(Y|X = x)

xeX

. Z Z P(x)P(y]x)log, P(y]x)

XEX YEY

== ) P ylogzP(yIx)

XEX yeY



§ 1.2 Entropy

SN
The Chain Rule (Relationship between Joint Entropy and Conditional Entropy)

HX,Y) =HX) + HY|X)
= H(Y) + H(X|Y)

Proof:
HIXY) == ) ) PG y)logaP ()

XEX YEY

- _ Z Z P (x,y)log, (P(y|x)P(x))

xeX yey

= — Z Z P(x,y)log,P(x) — Z Z P(x,y)log,P(y|x)

XEX yEY XEX yEY

= — Z P(x)log,P(x) — Z Z P(x,y)log, P(y|x)

xXE€X XEX yEY

= H(X) + H(Y|X)



§ 1.3 Mutual Information

e Two random variables X and Y.

e Realizations of X and Y are x and y.

e Distributions of X and Y are P(x) and P(y).
e Joint distribution of X and Yis P(x, y).

e Conditional distribution of X is P(x|y).

Mutual Information between X and Y:

P
I(X,Y) = Z Z P(x, y)log, 1)

xeX yeY P(x)




§ 1.3 Mutual Information

Mutual Information’s Relationship with Entropy:
I(X,Y)=HX)+HY)—-H(X,Y)

Proof:

— Z Z P(x,y)log,P(x,y) — Z P(x)log,P(x) — Z P(y)log,P(y)

XEX YEY xEX yEeY

= H(X)+ H(Y) - H(X,Y)

Remark: The above proof also shows the symmetry of mutual information as

I(X,Y) =1(Y,X)



§ 1.3 Mutual Information
]
Mutual Information’s Relationship with Entropy:
I(X,Y)=HX)+HY)—-H(X,Y)

This relationship can be visualized in the Venn diagram

I(X,Y)

H(X) H(Y)

H(X,Y)
Fig. A Venn diagram



§ 1.3 Mutual Information
I~~~
I(X,Y)

H(X) H(Y)

H(X,Y)

Fig. A Venn diagram
Corollary:

I(X,Y)=H(X) —HX|Y)

=H(Y) — H{Y|X)

This can also be concluded using the Chain Rule.
Bounds on /(X,Y)

0 <I(X,Y) < min{H(X),H(Y)}



§ 1.3 Mutual Information

Mutual Information of A Channel

Source

X

—

Channel

Sink

- Consider X is the transmitted signal, Y is the received signal.
- Y is avariant of X where the discrepancy is introduced by channel.

H(X) — H(X]Y)

How much we don’t know BEFORE
the channel observations.

/

L

b

How much we still don’t know
AFTER the channel observations.

How much information is carried by the channel, and this is called the

Mutual Information

of the channel, denoted as I(X,Y).

Remark: Mutual information I(X, Y) describes the amount of information one variable
X contains about the other Y, or vice versa as in I(Y, X).




§ 1.3 Mutual Information

B T
Example 1.3: Given the binary symmetric channel shown as

1 1

0
We know P(x =0) =03, P(x=1)=0.7, P(y=1|lx=1) = 0.8,
P(y=1|x=0)=0.2, P(y=0|x=1)=0.2 and P(y =0|x = 0) = 0.8.
Please determine the mutual information of such a channel.
Solution:
- Entropy of the binary source is

H(x) =—=P(x=0)log, P(x=0)—P(x=1)log, P(x = 1)

1 1
=0.3" logzm + 0.7 - log, 07
= 0.881 bits



§ 1.3 Mutual Information
.
- With P(x) and P(y|x), we know
Py=1)=Py=1lx=1)Px=1)+P(y=1x=0)P(x = 0)

= 0.62
Py=0)=Py=0lx=1)P(x=1)+P(y=0x=0)P(X =0)
= 0.38
Px=0,y=0)=P(y=0|x=0)-P(x=0) =0.24
_ —_m — Px=0y=0) _
P(x=0ly=0) = PO 0.63
Px=1y=0)=P(y=0|x=1)-P(x=1)=0.14
_ _m — Px=1y=0) _
Px=1ly=0) = o) 0.37
Px=0,y=1)=P(ly=1|x=0)P(x=0) = 0.06
_ _ 14y _ P(x=0y=1) _
Px=0ly=1) = Po=D 0.10
Px=1y=1)=P@y=1|x=1)P(x=1) = 0.56
Px=1y=1)
Px=1ly=1) = = 0.90

P(y=1)



§ 1.3 Mutual Information

* Hence, the conditional entropy is:

1 1
H(x|Y):P(x:0,y:0)|092P(X:0|y:O)+P(X=1,y=0)|092P(lelyzo)
1
P(x=0,y=1)lo P(x=1y=1)lo
+ (X y ) g2P(X:O|y:1)+ (X y ) gZP(lelyzl)

1 1 1 1
—0.24l09, —— +0.14l0g, —— + 0.06 109, —— + 0.56l0q, ——
92063 92037 92010 920,90

= 0.644bits/sym

e The mutual information is:

1(X,Y)=H(X)=H(X|Y)=0.237bits



§ 1.4 Channel Capacity

Input X Output Y
Channel >

A 4

e In a communication system, with the observation of ¥, we aim to recover X.
e Mutual Information I(X,Y) = H(X) — H(X|Y)
=H(Y) - H(YI|X)
It defines the amount of uncertainty about X that has been reduced thanks

to the knowledge of Y, and vise versa. This uncertainty discrepancy is

introduced by the channel.

e Channel capacity describes the channel’s best capability in reducing the

uncertainty.



§ 1.4 Channel Capacity
.

Input X | Channel Output \(
P(y [ x)

e Let the realization of input X and output Y be x and y, respectively.
e Channel transition probability P(y | x): knowing x was transmitted, the
probability of observing y. It defines the quality of channel.

e Channel Capacity
C= rgl(%c{l(X, Y)}

The maximum mutual information I (X, Y) that can be realized over all

distribution of the input P(x).



§ 1.4 Channel Capacity

e Channel Capacity: C = 1;1(@3{{1 (X, Y)}

e In a wireless communication system, it is the maximum number of information
bits that can be carried by a modulated symbol such that the information can be
recovered with an arbitrarily low probability of error.

e To realize this reliable communications, channel coding is needed. Given &

information symbols (or bits), redundancy 1s added to obtain n (n > k) codeword

symbols (or bits). The code rate is r = % Using binary modulation, e.g., BPSK,

reliable communications is possible if » < C.



§ 1.4 Channel Capacity

e Why input distribution P(x) matters?

e Consider the data transmission as human flows from Shenzhen to Hong Kong




§ 1.4 Channel Capacity

]
e Binary Symmetric Channel (BSC)

X Y
0 1P 0
p
p
1= 1

e Input: 01 000110T10...
OQutpu: 01 1100100 0..

e Input and output are discrete

e Py=1lx=0)=P(y=0lx=1)=p
Py=0lx=0=Py=1lx=1)=1-p

e [t is the simplest model of channel that introduces errors. Many wireless channels
can be abstracted to BSC.



§ 1.4 Channel Capacity

e Binary Symmetric Channel (BSC) X Y
0 P 0

><
e Analytic intuition L 1-p L

I(X,Y)=HX)—-H{YI|X)

1(X,Y) will be maximized if H(Y) is maximized and H(Y|X) is minimized.
(HH(Y) < 1.
Q)HY|X) = —Xxex ZyEY P(x,y)log,P(y|x)

= — 2xex Lyey P(Y|x)P(x)log, P(y|x)

= —P(x = 0) Xyer013 POlx = 0)log,P(y|x = 0)

—P(x =1) Xyer0,; PIx = Dlog,P (y|x = 1)
= =P (x = 0)((1 = p)log,(1 —p) + plog,p) —P(x = 1)(plog,p + (1 — p)log,(1 - p))
= —(1 —p)log,(1 - p) — plogyp
o When P(x =0) = P(x=1) =3, H(Y) = 1 and
C =1 — H(Y|X) bits/symbol.



§ 1.4 Channel Capacity

e Binary Symmetric Channel (BSC)

e Intuition: If 0 and 1 experience the same degree of channel impairment, i.e, P(y = 1|x = 0) =
P(y = 0]x = 1), there is no need to prioritize either 0 or 1 for transmission and P(x = 0) =

P(x=1)=%.

e C=1-HY|X),ifP(x=0)=P(x=1) =7

o H(Y|X) = —P(y = 0|x = 0) -5 -log,P(y = 0|x = 0)
=—-P(y=1|x =0) % log,P(y = 1|x = 0)
= —P(y = 0]x = 1) -5 - log,P(y = O|x = 1)
=—-Ply=1x=1) % log,P(y = 1|x = 1)

= —plog,p — (1 — p)log,(1 — p)

e C=1+plogp+ (1-p)log,(1— p) bits/symbol



§ 1.4 Channel Capacity

]
e Binary Symmetric Channel (BSC)

e C=1+plog,p+ (1-p)log,(1—p) bits/symbol

Capacity of BSC

1.1

1
0.9
0.8
0.7

C (bits/symbol)

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1



§ 1.4 Channel Capacity

e Additive White Gaussian Noise (AWGN) Channel

Noise
Input N Output
P

e Channel model y; = x; + n;

x;: discrete input signal, a modulated signal
n;: white Gaussian noise as V'(0, ), independent of x;

y;: continuous output signal, a variation of x;

e It is a more realistic wireless channel model where the transmitted signal is impaired
by noise.

e It is adopted to represent the space communication channel where light-of-sight (LoS)
transmission is always ensured.

e It is also often used as a common platform for channel code comparison.



§ 1.4 Channel Capacity

e Additive White Gaussian Noise (AWGN) Channel

Noise
Input N Output
P

e Channel model y; = x; + n;

e Mutual Information: I(X,Y) = H(Y) — H(Y|X)
=H(Y)—HMX + N|X)
=H(Y)—H(N|X)
=H(Y)—H(N)

e Capacity: C = r}gl(%{l (X,Y)}
= rp(%{H (Y) —H(N)}



§ 1.4 Channel Capacity

]
e Additive White Gaussian Noise (AWGN) Channel

o For AWGN: N'(0, g#). Its pdf is
0= oo (-27)
n)= ex —
\/EO'N P 20'1%
+00
H(N)=—j P(n)log,P(n)dn

(2) oo e (-3m) )
ex 0 eXx — n
\/_O'N p 82 \/_UN p 20_}\2}

1 .
=§10g2(2neg§) bits/symbol

e Ifinput X is normal distributed (continuous) as N (uy, o), I(X,Y) will be

maximized and

C =H(Y)—H(N)



§ 1.4 Channel Capacity

]
e Additive White Gaussian Noise (AWGN) Channel

o For Input: NV (uy, 02). Its pdfis
P(x) = exp (

B (x — HX)Z)

2
20y

H(X)=— f+ooP(x)10g2P(x)dx

= — o exp (— = 'uX)z) log Lexp (— (x #X)z) dx
— o \IZ_IIO'X 20)% ; \/Z_ﬂ'UX 26)?

1

= Elogz(Zﬂea}?) bits/symbol

e Since Y = X + N and X and N are independent
Output: V' (ux, o + o5) = N (uy, o)

1 :
H(Y) = Elogz(Zne(oﬁ +02)) bits/symbol



§ 1.4 Channel Capacity

]
e Additive White Gaussian Noise (AWGN) Channel

e Channel model: y; = x; + n;
e Capacity: C=H()—H(N)

1 1
= 51082 (2me(af + 0)) ~ Elogz(Zneaﬁ)

1 o

X .

= Elog2 (1 + —2) bits/symbol
ONn

e 07 is the power of the transmitted signal, while o is the power of noise. Hence,

2
a—"{ is often defined as the signal-to-noise ratio (SNR).

ON
e This only defines the inachievable transmission limit since in practice, X will not

be normal distributed.



§ 1.4 Channel Capacity

e Band Limited AWGN Channel

e Ina practical system, sampling is needed at the receiver to reconstruct the received
signal as Fig. 1.

A
XA W‘“\‘ X(f)

[

" v 7
Fig. 1 Received Signal and Sampling Fig. 2 Signal Sampling in frequency domain

e If the signal has a frequency of W, the sampling frequency should be at least 2W for
perfect signal reconstruction. (Fig. 2)



§ 1.4 Channel Capacity

e Band Limited AWGN Cl I

e With the sampling, we now have a series of time discrete Gaussian samples and the

channel model becomes

y(t=%)=x(t=%)+n( 2;/)5—12

e Signal x (t = ﬁ) has variance o

. S . N . .
Noise n (t = ﬁ) has variance 70, where N, 1s the noise power

e Capacity for each time discrete Gaussian channel

1 204
Cs —logz(l +i) bits/symbol
NO



§ 1.4 Channel Capacity

]
e Band Limited AWGN Channel

e Capacity of this band limited AWGN channel can be determined by

ZWTC
C = 5:; S, T-sampling duration

e Since the average signal power

2WT - o
E ZTXZ ZWO')%

1 E
C, = Elog2 (1 + WNO) bits/symbol

e Capacity of band limited AWGN channel becomes

1 E
2WT - lo (1 + )
o 82 WN,

N T

E
= Wlog, (1 + WN

) bits/second
0



§ 1.4 Channel Capacity

|
¢ Shannon Limit: Error free transmission over the Gaussian channel 1s possible if

: : . Ep .
the signal-to-noise ratio N—b is at least-1.6 dB.
0

Proof: » This possibility is sealed by the use of channel code (information length
k bits, codeword length n bits).

» Let E, and E, denote the energy of each information bit and each coded
bit, respectively. It is required
k - Eb =Nn- EC
so that adding redundancy does not increase the transmission energy.

» Consider each coded bit is carried by a modulated signal, e.g., using
binary phase shift keying (BPSK),
Eb * k

E=E=——=Er




§ 1.4 Channel Capacity
.

Continue the Proof

» Assume the signal frequency W — oo

C = lim Wlog, (1 +N0W)

W —oo

_E
~ NyIn2
_ Eb e

bits/second

N01n2
» For error free transmission, it is required

E
r< C=>N—b>ln2 = 0.69 = —1.6dB
0



§ 1.4 Channel Capacity

e AWGN Channel with Finite Modulation Alphabets

e Inawireless communication system, digital signal is modulated (mapped) to an
analog signal for transmission.

e Commonly used modulation schemes include:

N A
Ol. .00
1 >
1’ "10
BPSK QPSK
A
011 0000 0001 [ 0011 0010
01(2 ' .001 . . . .
110 000, 0100 0101|0111 0110
el *100 1100 1101 | 1111 1110
101
1000 1001 | 1011 1010

8PSK 16QAM



§ 1.4 Channel Capacity

e AWGN C] L with Finite Modulation Alphal

o Input X € {xq,%y, ..., Xy}, €.2., BPSK M =2, QPSK M = 4, 8PSK M = 8, 16QAM
M=16,....

e Channel Capacity

M
C = max me P(x;,y)log Pily) dy
P(x) )y i 2 P(xi)

Since
P(x;,y) = P(y|x;)P(x;)
P(ylx;)P(x;)
P(y)

M
PO) = ) POIxi)Px)

i'=1

P(xily) =



§ 1.4 Channel Capacity

]
e AWGN Channel with Finite Modulation Alphabets

M
C = max ZP(x')FOO P(y|x;)log Pyhx) dy
P(x) | Lo R YRty PCa)P(ylxy)

e Assume each modulated symbol is equally likely to be transmitted

1
P(x;) = P(x;r) = i

e Capacity:

+00 P .
f P(y|x;)log, 1 Olx) dy bits/symbol

=1 Yi— MZ?{:IP()’IXU)




§ 1.4 Channel Capacity

]
e AWGN Channel with Finite Modulation Alphabets

e Over the AWGN Channely = x; + n

P(yl,) = 1 exp(_ly_xi|2)
Y \2moy 205
()
= exp| ——
Z?TO'N P 20_}\2{
e Capacity:
M
1 P(ylx;)
Czﬁ ]E 10 2 1
i=1 Mzi‘i’_iP(ylxu)

1 Ix; +n—xy 2= |n|?\|
= log,M — MZ E |log, Z exp| — 207 bits/symbol



§ 1.4 Channel Capacity

]
e AWGN Channel with Finite Modulation Alphabets

log, (1+SNR)
8PSK

C (bits/symbol)

QPSK

BPSK

6 4 -2 0 2 4 o6 8 10 12 14 16 18 20 22 24
SNR (dB)
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